Welcome to our community

Be a part of something great, join today!

Finding Maximum Value

  • Thread starter
  • Admin
  • #1

anemone

MHB POTW Director
Staff member
Feb 14, 2012
3,755
Find the maximum of the expression \(\displaystyle x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4\) if \(\displaystyle x,\;y\) are real numbers with \(\displaystyle x+y=2\).
 

Opalg

MHB Oldtimer
Staff member
Feb 7, 2012
2,725
Find the maximum of the expression \(\displaystyle x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4\) if \(\displaystyle x,\;y\) are real numbers with \(\displaystyle x+y=2\).
This may not be the quickest solution, but it avoids calculus. Let $x=1+t$, then $y=1-t$. Notice that $1+x+x^2+x^3 = \dfrac{x^4-1}{x-1} = \dfrac{(1+t)^4-1}{t}$, and similarly $1+y+y^2+y^3 = -\dfrac{(1-t)^4-1}{t}.$ Also $xy = 1-t^2.$ Then $$ \begin{aligned}x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4 &= xy\bigl((1+x+x^2+x^3) + (1+y+y^2+y^3) - 1\bigr) \\ &= (1-t^2)\Bigl(\frac{(1+t)^4-1}{t} - \frac{(1-t)^4-1}{t} - 1\Bigr) \\ &= (1-t^2)(7+8t^2) \\ &= 7+t^2 -8t^4 \\ &= \frac{225}{32} - 8\Bigl(t^2 - \frac1{16}\Bigr)^2\quad \text{(completing the square).}\end{aligned}$$ Thus the maximum value is $\frac{225}{32}$, which occurs when $t = \pm\frac14$, or when $x = \frac34$ or $\frac54.$
 
Last edited by a moderator:

MarkFL

Administrator
Staff member
Feb 24, 2012
13,775
Here's a method involving the calculus:

If we use the constraint to get \(\displaystyle y=2-x\) and substitute this into the objective function, we find, after simplification that:

\(\displaystyle f(x)=-8x^4+32x^3-47x^2+30x\)

Equating the derivative to zero:

\(\displaystyle f'(x)=-32x^3+96x^2-94x+30=0\)

Dividing through by 2, we have:

\(\displaystyle -16x^3+48x^2-47x+15=0\)

Multiplying through by -1 and factoring, we have:

\(\displaystyle (x-1)(4x-5)(4x-3)=0\)

Use of the first derivative test shows that relative maxima occur at:

\(\displaystyle x=\frac{3}{4},\,\frac{5}{4}\)

and we find:

\(\displaystyle f_{\text{max}}=f\left(\frac{3}{4} \right)=f\left(\frac{5}{4} \right)=\frac{225}{32}\)
 
  • Thread starter
  • Admin
  • #4

anemone

MHB POTW Director
Staff member
Feb 14, 2012
3,755
Thanks to both of you for participating and also the awesome method on how to solve this problem too!

My solution:

\(\displaystyle x^4y+x^3y+x^2y+xy+xy^2+xy^3+xy^4=xy(x^3+x^2+x+1+y+y^2+y^3)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x^3+y^3)+(x^2+y^2)+(x+y)+1)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((x+y)^3-3xy(x+y)+(x+y)^2-2xy+(x+y)+1)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy((2)^3-3xy(2)+(2)^2-2xy+(2)+1)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=xy(15-8xy)\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=-8(xy-\frac{15}{16})^2+\frac{225}{32}\)

Hence, the maximum value is \(\displaystyle \frac{225}{32}\).