- Thread starter
- #1

- Apr 13, 2013

- 3,739

I am looking at the following exercise:

Let the linear system $Ax=b$ with $\begin{pmatrix}

2.001 & 2\\

2& 2

\end{pmatrix}$

,$b=\begin{bmatrix}

2.001 &2

\end{bmatrix}^T$ and y an approximate solution,so that $Ay-b=\begin{bmatrix}

0.001 &0

\end{bmatrix}^T$ .Find an upper bound of the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ .

I found that it is equal to 2,could you tell me if it is right?