Theoretical spring constant calculation for a tube of pipe

In summary, I need to find the diameter of the glass pipette which will have a spring constant of 100 Newtons/metre. If someone could point me towards relevant information on calculating, or using software to find the solution it would be greatly appreciated.
  • #1
ReliableSin
5
0

Homework Statement



I require the a means to theoretically calculate the spring constant of a hollow tube.
Essentially, I need to find the diameter of the glass pipette which will have a spring constant of 100 Newtons/metre. If someone could point me towards relevant information on calculating, or using software to find the solution it would be greatly appreciated.

Homework Equations



This is what I need. I've been searching, but all I've been able to find are solutions based on spring geometry.

The Attempt at a Solution



No idea.
 
Engineering news on Phys.org
  • #2
Welcome to PF!

Hi ReliableSin! Welcome to PF! :smile:

I don't understand … what are you intending to do with this glass pipette? :confused:

Are you using it to support something, as a building column?
 
  • #3
I'm using it as a cantilever tip in some atomic force microscopy experiments. Usually we fabricate our own cantilevers using optical fiber with a spring constant of ~100 Newtons/metre. Now we want to use a pipette as the cantilever tip. As such, we need the pipette to have a spring constant of about the same value. We can adjust the spring constant of the pipette by tapering or etching. However, we also need to make a bend in this pipette, and the thinner we make the pipette before bending, the higher the chance that our bend will stop fluid from flowing through the pipette.
To sum up, I need to know how to get the spring constant of a tube so I calculate what is the largest pipette diameter I can use which will have an appropriate spring constant.

I've been reading through the pages on wikipedia on spring constants and deflection. I think I need to find the appropriate moment of inertia for a cylinder, which is simple, and sub this into the equations given for a normal cantilever. However, I'm having a hard time following their math, specifically how they eliminate their force term.
 
  • #4
ReliableSin said:

Homework Statement



I require the a means to theoretically calculate the spring constant of a hollow tube.
Essentially, I need to find the diameter of the glass pipette which will have a spring constant of 100 Newtons/metre. If someone could point me towards relevant information on calculating, or using software to find the solution it would be greatly appreciated.

Homework Equations



This is what I need. I've been searching, but all I've been able to find are solutions based on spring geometry.

The Attempt at a Solution



No idea.

ReliableSin said:
I'm using it as a cantilever tip in some atomic force microscopy experiments. Usually we fabricate our own cantilevers using optical fiber with a spring constant of ~100 Newtons/metre. Now we want to use a pipette as the cantilever tip. As such, we need the pipette to have a spring constant of about the same value. We can adjust the spring constant of the pipette by tapering or etching. However, we also need to make a bend in this pipette, and the thinner we make the pipette before bending, the higher the chance that our bend will stop fluid from flowing through the pipette.
To sum up, I need to know how to get the spring constant of a tube so I calculate what is the largest pipette diameter I can use which will have an appropriate spring constant.

I've been reading through the pages on wikipedia on spring constants and deflection. I think I need to find the appropriate moment of inertia for a cylinder, which is simple, and sub this into the equations given for a normal cantilever. However, I'm having a hard time following their math, specifically how they eliminate their force term.

It does sound like glass will be too brittle for this application. Have you considered making the bending pipette out of some other material?
 
  • #5
We use glass for these applications all the time. The issue is that the stiffness of a non-tapered glass pipette is too great to perform contact-mode measurements.
 
  • #6
I'm assuming you have a cantilevered tube made of glass, but then you imply that the tube is actually tapered. If it isn't tapered, you can use straight beam equations:

I = 3.14159 (Do4-Di4) / 64
Where:
Do = OD
Di = ID

I is moment of inertia in units of length raised to the 4'th power.

Deflection of this beam is:

d = F L3 / (3 E I)
Where:
d = deflection (units of length)
F = Force
L = beam length
E = bending modulus (units of force per length squared)

To get spring constant:

k = F / d

k = 1 / ( L3 / (3 E I) )

This assumes the beam is tubular and straight and of uniform cross section and the force is perpendicular to the axis of the tube.

If the tube is actually tapered, curved, nonuniform cross section, etc... it will get a bit more messy...
 
  • #7
Thank you so much! That's incredibly helpful. Could you point me towards your source for further reading on the topic?
And as you said, the tapering will modify these calculations. Will it essentially be a change of the moment of inertia, or is it more complex than that?
 

Related to Theoretical spring constant calculation for a tube of pipe

1. What is a theoretical spring constant?

A theoretical spring constant is a measure of the stiffness or resistance of a spring to deformation, and is calculated based on the material properties and geometry of the spring.

2. How is the spring constant calculated for a tube of pipe?

The spring constant for a tube of pipe can be calculated using the formula k = (E * t * (D^4 - d^4)) / (8 * D^3 * d), where E is the Young's modulus of the material, t is the wall thickness of the pipe, D is the outer diameter, and d is the inner diameter.

3. What factors can affect the theoretical spring constant for a tube of pipe?

The theoretical spring constant for a tube of pipe can be affected by the material properties, such as the Young's modulus and yield strength, as well as the dimensions of the pipe, including the wall thickness and diameter.

4. How is the spring constant used in engineering and design?

The spring constant is an important parameter in engineering and design, as it helps determine the behavior and performance of a spring under different loads. It is commonly used in designing springs for various applications, such as in mechanical systems and structures.

5. Are there any limitations to using the theoretical spring constant for a tube of pipe?

Yes, the theoretical spring constant is an idealized calculation and may not accurately represent the actual behavior of a real spring. Factors such as manufacturing tolerances, material imperfections, and external forces can affect the spring constant in practical applications.

Similar threads

Replies
4
Views
237
  • Mechanical Engineering
Replies
31
Views
2K
  • Introductory Physics Homework Help
Replies
14
Views
429
Replies
52
Views
10K
  • Mechanical Engineering
2
Replies
59
Views
4K
Replies
5
Views
1K
Replies
7
Views
1K
  • Mechanical Engineering
Replies
2
Views
4K
  • Introductory Physics Homework Help
Replies
7
Views
3K
  • Introductory Physics Homework Help
2
Replies
43
Views
3K
Back
Top