- Thread starter
- #1
Exactly what do you want to do, what you have posted is not a question. Please post the question as asked.P(x)= x^4-4x^3+10x^2+12x-39, using synthetic division given 2+3i is a zero of function
If a polynomial with real coefficients has a complex zero, then the complex conjugate of that number is also a zero. Thus 2+3i and 2-3i are both zeros. By the factor theorem, $x-(2+3i)$ and $x-(2-3i)$ are both factors of $P(x)$. Hence so is their product $\bigl(x-(2+3i)\bigr)\bigl(x-(2-3i)\bigr)$. Work out that product (which is a real quadratic polynomial), then use synthetic division to divide $P(x)$ by that quadratic. The quotient will be another quadratic, which you can solve to get the other two zeros of $P(x)$.P(x)= x^4-4x^3+10x^2+12x-39, using synthetic division given 2+3i is a zero of function