- Thread starter
- #1
Use that $\dfrac{1}{1+x}=1-x+x^2-x^3+\ldots\quad (|x|<1)$ and take into account that all power series can be integrated term by term on an interval lying inside the interval of convergence.Show that log(1+x) = x - x2\2 + x3\3................
Of course you can. But using that method you only obtain the Taylor series of $f(x)=\log (1+x)$, that is $\displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}\dfrac{x^n}{n}$. To prove that $\log (1+x)=\displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}\dfrac{x^n}{n}$ in $(-1,1)$ (also in $x=1$) you need to verify that the remainder of the Taylor series converges to $0$.Can we write this as a Taylor's series as f(x) = Log(1+x), then f'(x)=1\1+x so on.
If you want to use the long method, remember that a Maclaurin series for a function is given by $\displaystyle \begin{align*} f(x) = \sum_{n = 0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n \end{align*}$Show that,
\[\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+\cdots\]
It is, however, the essentially the same as Fernando Revilla's suggestion in the first response to this thread.Taking the derivative of the MacLaurin series gives you
$1 -x +x^2 - x^3 + x^4 + \ldots$
Since this is a geometric series with ratio $-x$, it equals $\frac{1}{1 + x}$ when x is in $(-1, 1)$.
This shows the expression $\ln(1+x)$ and its MacLaurin expansion to have the same derivative over $(-1, 1)$, which means they are equal within a constant. And, since they are equal at $x=0$, this constant is zero.
If my reasoning is correct, this is simpler than proving the limit of the Taylor remainder.
The logic and context are not the same, as I was answering the question whether you can use the Taylor series. In general, you prove the validity of the Taylor expansion over a given interval by proving the Taylor reminder tends to zero as n goes to infinity. But here, because we can bring out a geometric series, as Fernando Revilla does in the initial answer, we have a simpler alternative. It is actually an exceptional case that is worth noting.It is, however, the essentially the same as Fernando Revilla's suggestion in the first response to this thread.