Fender Washer Strength: Determining Adequate Load Capacity for Wire Rope Tension

  • Thread starter nation99
  • Start date
  • Tags
    Strength
  • #1
nation99
6
1
Please see the included sketch. I need to know if the fender washer I'm planning to use will be strong enough to not deform and thus reduce the tension on the wire rope. TIA, Dave

Fender Washer.jpg
 

Attachments

  • wire rope sketch10152023.pdf
    622.4 KB · Views: 46
Last edited by a moderator:
Engineering news on Phys.org
  • #2
Welcome to PF.

Failure of the washer will depend on the unspecified inside diameter of the helical spring.
 
  • #3
Baluncore said:
Failure of the washer will depend on the unspecified inside diameter of the helical spring.
Yes, forgot to include the spring info. Spring I.D, is 0.488 and the O.D. is 0.812. I should also mention that the aluminum ferruel will not have full contact with the fender washer due to distortion as a result of crimping it to the wire rope. Thanks.
 
  • #4
Only the 0.095" wire centres the washer in the ID=0.488" spring.
For that reason, it is likely that the wire will not remain axial in the spring.

I am not saying the washer will fail, just that it will not constrain the position and alignment, to prevent buckling sideways of the spring.
 
  • #5
I've considered that and am thinking about adding a sleeve to insert between the wire rope and the spring ID.
 
  • #6
Washer annulus = ( 0.75 - 0.17 ) / 2 = 0.29"
Wire diameter = 0.095"
Sum of wire and annulus = 0.095 + 0.290 = 0.385"
That is less than the spring ID = 0.488"
So the washer can be pulled through the inside of the helical spring.

I would design a stepped seat to replace the fender washer.
 
  • Like
Likes Joe591 and gmax137
  • #7
Just get a bigger fender washer
 
  • #8
You probably have guessed by now that I'm a DIYer and not an engineer. That being said, I do understand what you are suggesting is a possibility. Thus my original question...will the fender washer be stiff enough to maintain the load that it will see?
 
  • #9
nation99 said:
You probably have guessed by now that I'm a DIYer and not an engineer. That being said, I do understand what you are suggesting is a possibility. Thus my original question...will the fender washer be stiff enough to maintain the load that it will see?
If it isn't, just use 2 or 3 of them.
 
  • #10
nation99 said:
Thus my original question...will the fender washer be stiff enough to maintain the load that it will see?
If you have ignored the obvious failure modes, and so build a house of cards, that design failure may later be investigated by a Coroner.

Look for data on a stainless steel belleville = cone shaped spring washer, that has a greater outer diameter, and will not flatten at 150 lb.
https://en.wikipedia.org/wiki/Belleville_washer

Nesting two different belleville washers may help centre the wire in the helical spring.

You might also consider simply replacing the carbon steel spring with a stack of alternated stainless-steel belleville washers, that gives the same spring constant.
 
  • Like
Likes gmax137
  • #11
nation99 said:
... Thus my original question...will the fender washer be stiff enough to maintain the load that it will see?
I believe that it will be stiff enough, but the assembly will not be stable, as mentioned above.

I have created a scale drawing with the dimensions that you have provided.
Note how the magenta spring is free to move toward the right and go over the outside diameter of your washer.

At a glance, that washer is the only member of your assembly that looks marginally able to match the other beefy elements.

Another factor that may make things worse is the non-flat bottom of that heavy duty spring (if the spiral ends have not been squared and ground to be flat), which will transfer the load completely off-center to the washer, which will not remain horizontal.

Note how commercial spring hangers, rather than flat washers, have spring cups at both ends of the spring, in order to avoid the discussed problem.

As you don't have those metal cups, a simple rubber sleeve located inside the spring, having the proper OD and ID, could greatly help with stability.
HSA-Hanger.jpg


compression-spring-ends-v2.jpg


Angle-spring-wire rope.jpg
 
Last edited:
  • Like
Likes nation99 and Spinnor
  • #12
As described very well above, most springs are a poor match to this layout. They wriggle, squirm, create point-loads, lie skew and are generally 'a pain in the tool-kit'...

The flattened last-turns, centring sleeves, conical / domed washers, end-cups etc etc are each a part of solution. A flattened last-turn meeting sufficiently stepped washer at each end would seem simplest route. Also, if you hunt around, very thick washers are available. I've even seen them in craft-shops as 'loom weights', but their usual purpose is load spreading for foundation and similar heavy-duty fixings. I'm told they are handy as weld-on, bolt-through hard-points for sheet metal, where a stud's flange would not do.

( Think 'grommet' on fabric, be it ground-sheet or sail... )
 
  • #13
Baluncore said:
I would design a stepped seat to replace the fender washer.
@nation99 this would be a good approach. Maybe you or a friend has a lathe, these could be turned up in a matter of minutes. I would volunteer to do it for you but my lathe is out of service, I'm looking for a new motor...
 
  • Like
Likes Nik_2213
  • #14
Lnewqban said:
I believe that it will be stiff enough, but the assembly will not be stable, as mentioned above.

I have created a scale drawing with the dimensions that you have provided.
Note how the magenta spring is free to move toward the right and go over the outside diameter of your washer.

At a glance, that washer is the only member of your assembly that looks marginally able to match the other beefy elements.

Another factor that may make things worse is the non-flat bottom of that heavy duty spring (if the spiral ends have not been squared and ground to be flat), which will transfer the load completely off-center to the washer, which will not remain horizontal.

Note how commercial spring hangers, rather than flat washers, have spring cups at both ends of the spring, in order to avoid the discussed problem.

As you don't have those metal cups, a simple rubber sleeve located inside the spring, having the proper OD and ID, could greatly help with stability.View attachment 333644

View attachment 333645

View attachment 333643
Thank you for your time and thoughts. The springs are plain and ground ends. I agree that installing a sleeve between the wire rope and the spring I.D. will add stability. All I want to do is to maintain tension on the wire rope and the spring is there to compensate for slight movement of the surrounding/supporting structure (treated wood). I'll continue looking for washers that may be a bit thicker. Thanks again!!
 
  • Like
Likes Lnewqban
  • #15
nation99 said:
All I want to do is to maintain tension on the wire rope and the spring is there to compensate for slight movement of the surrounding/supporting structure (treated wood).
How much play are you expecting? @Baluncore has the right idea when he suggests a stack of Belleville washers for this amount of force.
 
  • #16
Nugatory said:
How much play are you expecting? @Baluncore has the right idea when he suggests a stack of Belleville washers for this amount of force.
I chose this spring because it provides a range of tension that is appropriate for the application when it is at the mid range of travel which is 0.200"...0.400 from full length to solid length. Belleville washers would be a good option, but I think the cost of the washers required to get that amount of travel would be cost prohibitive.

Expected travel is unknown, but I can imagine +/- .125" possible due to expansion and contraction of the treated wood.
 

What is a fender washer and how is it used in wire rope tension applications?

A fender washer is a flat washer with a particularly large outer diameter in proportion to its central hole. They are commonly used to distribute the load of a threaded fastener, like a screw or nut, over a larger area. In wire rope tension applications, fender washers help to distribute the stress exerted by the tensioned rope over a broader area, thereby reducing the risk of damage to the surface material and enhancing the stability of the connection.

How do you determine the adequate load capacity for a fender washer in wire rope applications?

To determine the adequate load capacity for a fender washer in wire rope applications, it's essential to consider factors such as the maximum load the wire rope will bear, the material of the washer, the environmental conditions (like corrosion potential), and the size of the washer relative to the bolt and mounting surface. Calculations should include the expected tension in the wire rope and the mechanical properties of the washer material, ensuring that the washer can handle the load without deforming or failing.

What materials are best for fender washers used in high-tension wire rope applications?

The best materials for fender washers in high-tension wire rope applications are typically those that offer high strength and corrosion resistance. Stainless steel is a common choice due to its durability and resistance to rust. For extremely high loads or harsh environments, alloy steels or specialized materials like titanium might be used. The choice of material also depends on factors like cost, availability, and specific environmental conditions.

Can the size of a fender washer affect its performance in wire rope tension systems?

Yes, the size of a fender washer significantly affects its performance in wire rope tension systems. A larger outer diameter will distribute the load over a greater area, reducing the pressure on the mounting surface and minimizing the risk of material deformation or failure. However, the thickness of the washer also plays a critical role in its ability to withstand the load without bending or breaking. Therefore, both the diameter and thickness should be optimized based on the specific requirements of the application.

What are the common signs of failure in fender washers used with wire rope, and how can they be mitigated?

Common signs of failure in fender washers used with wire rope include bending, cracking, rusting, and excessive wear. These can be mitigated by selecting the appropriate material and size of the washer for the expected loads and environmental conditions. Regular inspection and maintenance are also crucial to detect early signs of wear or corrosion and replace the washers before they fail. Additionally, using proper installation techniques to ensure even load distribution can help prevent premature washer failure.

Similar threads

  • Introductory Physics Homework Help
2
Replies
38
Views
1K
  • Mechanical Engineering
Replies
4
Views
1K
  • Mechanical Engineering
Replies
1
Views
3K
Replies
2
Views
2K
  • Mechanical Engineering
Replies
11
Views
2K
  • Other Physics Topics
Replies
1
Views
4K
  • Mechanical Engineering
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
10K
Replies
1
Views
5K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
1K
Back
Top