Can Complex Inequalities Determine Optimal Critical Regions in Statistics?

In summary, the problem is to find the optimal critical region for a hypothesis test, given a sample of Poisson distributed variables. The solution involves finding a value, c, that satisfies two inequalities involving sums of powers of n and lambda. It is difficult to find an explicit solution, but the problem can be simplified by considering the behavior of the sums as c increases and comparing them to the value of alpha. The original problem involves applying the Neyman-Pearson theorem and using logarithms to solve for c.
  • #1
GabrielN00

Homework Statement


Solving an exercise I found myself with this problem: the solution ##c## needs to verify both ##\sum_{k=1}^c n\lambda^k\frac{e^{n\lambda}}{k!}\leq \alpha## and ##1-\sum_{k=1}^{c+1} n\lambda^k\frac{e^{n\lambda}}{k!}\geq \alpha##.

Can an equation like this be solved for c?

Homework Equations

The Attempt at a Solution


An inversion of the inequality didn't work because it vanishes ##\alpha##, I don't think there is an explicit form for the solution, but I've failed in finding an argument to explain why.
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Assuming all parameters are positive, both sums increase with increasing c, so the inequalities will be valid from c=0 (or c=1) up to some maximal c. If you are just interested in finding any solution, test the smallest c allowed.

Apart from constant prefactors, your sum is ##\displaystyle \sum_{k=1}^{c} \frac{\lambda^k}{k}##, I'm not aware of closed forms for that (although some special values of ##\lambda## might have them). Is it really ##k## in the denominator, not ##k!## ?
 
  • #3
mfb said:
Assuming all parameters are positive, both sums increase with increasing c, so the inequalities will be valid from c=0 (or c=1) up to some maximal c. If you are just interested in finding any solution, test the smallest c allowed.

Apart from constant prefactors, your sum is ##\displaystyle \sum_{k=1}^{c} \frac{\lambda^k}{k}##, I'm not aware of closed forms for that (although some special values of ##\lambda## might have them). Is it really ##k## in the denominator, not ##k!## ?
It is k!. I mistyped that.

There was another error, it is
##1-\sum_{k=1}^{c} n^k\lambda^k\frac{e^{n\lambda}}{k!}\geq \alpha##, NOT ##1-\sum_{k=1}^{c+1} n\lambda^k\frac{e^{n\lambda}}{k!}\geq \alpha##.

and

##\sum_{k=1}^{c} n^k\lambda^k\frac{e^{n\lambda}}{k!}\leq \alpha## instead of ##\sum_{k=1}^{c} n\lambda^k\frac{e^{n\lambda}}{k!}\leq \alpha##
 
Last edited by a moderator:
  • #4
Okay, so we have the standard Poisson distribution with ##n\lambda## expectation value. I'm not aware of closed formulas for the cumulative distribution function.

As the two sums are now the same, the problem got easier: Check which inequality you have to consider for ##\alpha## smaller or larger than 1/2,
 
  • #5
mfb said:
Okay, so we have the standard Poisson distribution with ##n\lambda## expectation value. I'm not aware of closed formulas for the cumulative distribution function.

As the two sums are now the same, the problem got easier: Check which inequality you have to consider for ##\alpha## smaller or larger than 1/2,

I don't understand the last part. I don't have the values ##n,\lambda,c## which I think I need to calculate the sum, and I need to calculate the sum in order too know which inequality should I use if ##\alpha## smaller or larger than 1/2.
 
  • #6
Without all the constants in the sum, it is just ##\sum_{k=1}^c \frac{\lambda^k}{k!} \leq \ldots ## which is just the exponential function ##- 1##. There are probably more approximations ##r## for ##e^x = \sum_{k=0}^N \frac{x^k}{k!} + r(x;N) \text{ with } r(x;N) \leq \ldots ## than of any other function.
 
  • #7
GabrielN00 said:
It is k!. I mistyped that.

There was another error, it is
##1-\sum_{k=1}^{c} n^k\lambda^k\frac{e^{n\lambda}}{k!}\geq \alpha##, NOT ##1-\sum_{k=1}^{c+1} n\lambda^k\frac{e^{n\lambda}}{k!}\geq \alpha##.

and

##\sum_{k=1}^{c} n^k\lambda^k\frac{e^{n\lambda}}{k!}\leq \alpha## instead of ##\sum_{k=1}^{c} n\lambda^k\frac{e^{n\lambda}}{k!}\leq \alpha##

Do you really mean to have ##e^{n \lambda}## rather than ##e^{- n \lambda}##? I ask, because if ##p_k(\mu) = \mu^k e^{-\mu}/k!## is the Poisson probability mass function for mean ##\mu## your sum has the form ##e^{2 n \lambda} \sum_{k=1}^c p_k(n \lambda)##. If you had ##e^{-n \lambda}## instead, your sum would be ##\sum_{k=1}^c p_k(n \lambda)##, which is almost the cumulative distribution function; it merely lacks the ##k=0## term.
 
  • Like
Likes GabrielN00 and fresh_42
  • #8
Ray Vickson said:
Do you really mean to have ##e^{n \lambda}## rather than ##e^{- n \lambda}##? I ask, because if ##p_k(\mu) = \mu^k e^{-\mu}/k!## is the Poisson probability mass function for mean ##\mu## your sum has the form ##e^{2 n \lambda} \sum_{k=1}^c p_k(n \lambda)##. If you had ##e^{-n \lambda}## instead, your sum would be ##\sum_{k=1}^c p_k(n \lambda)##, which is almost the cumulative distribution function; it merely lacks the ##k=0## term.

You're right. It is ##e^{-n\lambda}##.

It's supposed to be the cumulative function. This is part of a larger problem, I didn't post the whole thing because I had some parts worked out. I don't think I can edit the initial post anymore, but I will post the original problem to give some context (which I probably should have done before).

The idea of the problem consists in having ##X_1,\dots, X_n## simple random sample of ##X\sim \operatorname{Poisson}(\lambda)## and the goal is the optimal critical region ##\alpha## for ##H_0:\lambda =\lambda_0## against ##H_1:\lambda=\lambda_1##.

I applied Neyman-Pearson theorem and followed ## \frac{\lambda_0}{\lambda_1} = \frac{(\lambda_0^{\sum x_i} e^{-\lambda_0}) / (\prod_{i=1}^n x_i!)}{(\lambda_1^{\sum x_i}e^{-\lambda_1})/(\prod_{i=1}^n x_i!)} = \frac{\lambda_0^{\sum x_i}e^{\lambda_1}}{\lambda_1^{\sum x_i}e^{\lambda_0}}\leq k##

Taking logarithms

## \ln \left( \lambda_0^{\sum x_i}e^{\lambda_1} \right)-\ln \left( \lambda_1^{\sum x_i}e^{\lambda_0} \right)\leq \ln(k)\\
\ln \left( \lambda_0^{\sum x_i}\right)+\ln\left(e^{\lambda_1} \right)-\ln \left( \lambda_1^{\sum x_i}\right)-\left(e^{\lambda_0} \right)\leq \ln(k)\\
\left(\sum x_i\right)\ln (\lambda_0)+\lambda_1 -\left( \sum x_i \right)\ln \left( \lambda_1\right)-\lambda_0\leq \ln(k)\\
\left(\sum x_i\right)\left(\ln (\lambda_0) -\ln \left( \lambda_1\right)\right)\leq \ln(k)+(\lambda_0-\lambda_1)\\
\sum x_i\leq \frac{\ln(k)+(\lambda_0-\lambda_1)}{\ln (\lambda_0) -\ln \left( \lambda_1\right)}
##

Because of that I have to find ##c## such that
##P\left( \sum_{i=1}^n X_i \leq c |, \lambda = \lambda_0 \right) \leq \alpha##

and

##P\left( \sum_{i=1}^{c+1} X_i \le c \,\middle|\, \lambda = \lambda_0 \right) \geq \alpha##Which reduced to the pair of equations you see above.
 
Last edited by a moderator:
  • #9
GabrielN00 said:
You are right, it is ##e^{-n\lambda}##
In that case, you can express the sum in terms of known functions:
$$\sum_{k=0}^c \frac{(n \lambda)^k e^{-n \lambda}}{k!} = \frac{\Gamma(c+1,n \lambda)}{\Gamma(c+1)}, $$
where ##\Gamma(p,q)## is the incomplete Gamma function:
$$\Gamma(p,q) = \int_q^{\infty} t^{p-1} e^{-t} \, dt .$$
Whether this is of any use at all is another issue.
 
Last edited:
  • #10
GabrielN00 said:
You're right. It is ##e^{-n\lambda}##.

It's supposed to be the cumulative function. This is part of a larger problem, I didn't post the whole thing because I had some parts worked out. I don't think I can edit the initial post anymore, but I will post the original problem to give some context (which I probably should have done before).

The idea of the problem consists in having ##X_1,\dots, X_n## simple random sample of ##X\sim \operatorname{Poisson}(\lambda)## and the goal is the optimal critical region ##\alpha## for ##H_0:\lambda =\lambda_0## against ##H_1:\lambda=\lambda_1##.

I applied Neyman-Pearson theorem and followed ## \frac{\lambda_0}{\lambda_1} = \frac{(\lambda_0^{\sum x_i} e^{-\lambda_0}) / (\prod_{i=1}^n x_i!)}{(\lambda_1^{\sum x_i}e^{-\lambda_1})/(\prod_{i=1}^n x_i!)} = \frac{\lambda_0^{\sum x_i}e^{\lambda_1}}{\lambda_1^{\sum x_i}e^{\lambda_0}}\leq k##

Taking logarithms

## \ln \left( \lambda_0^{\sum x_i}e^{\lambda_1} \right)-\ln \left( \lambda_1^{\sum x_i}e^{\lambda_0} \right)\leq \ln(k)\\
\ln \left( \lambda_0^{\sum x_i}\right)+\ln\left(e^{\lambda_1} \right)-\ln \left( \lambda_1^{\sum x_i}\right)-\left(e^{\lambda_0} \right)\leq \ln(k)\\
\left(\sum x_i\right)\ln (\lambda_0)+\lambda_1 -\left( \sum x_i \right)\ln \left( \lambda_1\right)-\lambda_0\leq \ln(k)\\
\left(\sum x_i\right)\left(\ln (\lambda_0) -\ln \left( \lambda_1\right)\right)\leq \ln(k)+(\lambda_0-\lambda_1)\\
\sum x_i\leq \frac{\ln(k)+(\lambda_0-\lambda_1)}{\ln (\lambda_0) -\ln \left( \lambda_1\right)}
##

Because of that I have to find ##c## such that
##P\left( \sum_{i=1}^n X_i \leq c |, \lambda = \lambda_0 \right) \leq \alpha##

and

##P\left( \sum_{i=1}^{c+1} X_i \le c \,\middle|\, \lambda = \lambda_0 \right) \geq \alpha##Which reduced to the pair of equations you see above.
I really don't "get" these two equations. Suppose, eg., that ##\lambda_0 < \lambda_1##. Say we accept the null hypothesis if ##\sum X_i \leq c## and reject it if ##\sum X_i > c##. (Since the random variables are discrete we need to distinguish ## < c## from ##\leq c##, and I have more-or-less arbitrarily chosen the ##\leq c## version for the acceptance region.) Thus, we accept ##H_0## if ##\sum_{I=1}^n X_i \leq c## and reject it otherwise. So, the probability of a type-I error is ##P(I) = P(\sum_{I=1}^n X_i > c| \lambda = \lambda_0)##, and we want this to be ##\leq \alpha.## For a given ##n## that tells you the acceptable values of ##c##.

The probability of a type-II error is ##P(II) = P(\sum_{I=1}^n X_i \leq c | \lambda = \lambda_1)##, and (presumably) we want this to be ##\leq \beta## for some specified value ##\beta.## Your presentation does mention any ##\beta##, but of course you could take ##\beta = \alpha.## However, if you are doing that you need to mention it!

The two conditions taken together give two inequalities involving ##(n , c)##, which we can probably solve (numerically) using a computer algebra package such as Maple or Mathematica.
 
Last edited:
  • #11
GabrielN00 said:
You're right. It is ##e^{-n\lambda}##.
I will post the original problem to give some context (which I probably should have done before).

You definitely should have.

GabrielN00 said:
You're right. It is ##e^{-n\lambda}##.
The idea of the problem consists in having ##X_1,\dots, X_n## simple random sample of ##X\sim \operatorname{Poisson}(\lambda)## and the goal is the optimal critical region ##\alpha## for ##H_0:\lambda =\lambda_0## against ##H_1:\lambda=\lambda_1##.

Suppose for a minute that ##X## is instead a normal random variable with variance of 1. Can you solve this? How would you do it?

- - - - - - - -
I am getting concerned that you are getting into the weeds of classical stats with a firm grounding in probability. Classical stats is already notorious for being presented in a cookbook of recipes fashion, with ties to probability, making it confusing for people. If the ties aren't strong, it gets worse.
 

Related to Can Complex Inequalities Determine Optimal Critical Regions in Statistics?

1. What is an inequality?

An inequality is a mathematical statement that compares two quantities and shows their relationship using symbols such as <, >, ≤, and ≥. It indicates that one quantity is either less than or greater than the other.

2. What makes an inequality "strange"?

An inequality is considered "strange" when it involves unusual or complex expressions, such as variables with exponents, absolute values, or logarithms. These types of inequalities may require a different approach or additional techniques to solve them.

3. How do I solve a strange inequality?

The first step in solving a strange inequality is to simplify the expression as much as possible. Then, determine the critical points by setting the expression equal to zero and solving for the variable. Next, plot the critical points on a number line and test a value in each interval to determine the solution. Finally, write the solution in interval notation.

4. Can I check my answer to make sure it is correct?

Yes, you can always check your answer by substituting it back into the original inequality and simplifying. If the resulting statement is true, then your answer is correct.

5. Are there any common mistakes to avoid when solving a strange inequality?

One common mistake is forgetting to flip the inequality symbol when multiplying or dividing by a negative number. It is also important to check for extraneous solutions, as some expressions may result in solutions that do not satisfy the original inequality.

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
389
  • Calculus and Beyond Homework Help
Replies
3
Views
532
  • Calculus and Beyond Homework Help
Replies
6
Views
1K
Replies
7
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
326
  • Topology and Analysis
Replies
4
Views
343
Back
Top