What is States: Definition and 1000 Discussions

The United States of America is a federal republic consisting of 50 states, a federal district (Washington, D.C., the capital city of the United States), five major territories, and various minor islands. The 48 contiguous states and Washington, D.C., are in North America between Canada and Mexico, while Alaska is in the far northwestern part of North America and Hawaii is an archipelago in the mid-Pacific. Territories of the United States are scattered throughout the Pacific Ocean and the Caribbean Sea.
States possess a number of powers and rights under the United States Constitution, such as regulating intrastate commerce, running elections, creating local governments, and ratifying constitutional amendments. Each state has its own constitution, grounded in republican principles, and government, consisting of three branches: executive, legislative, and judicial. All states and their residents are represented in the federal Congress, a bicameral legislature consisting of the Senate and the House of Representatives. Each state is represented by two senators, while representatives are distributed among the states in proportion to the most recent constitutionally mandated decennial census. Additionally, each state is entitled to select a number of electors to vote in the Electoral College, the body that elects the president of the United States, equal to the total of representatives and senators in Congress from that state. Article IV, Section 3, Clause 1 of the Constitution grants to Congress the authority to admit new states into the Union. Since the establishment of the United States in 1776, the number of states has expanded from the original 13 to the current total of 50, and each new state is admitted on an equal footing with the existing states.As provided by Article I, Section 8 of the Constitution, Congress exercises "exclusive jurisdiction" over the federal district, which is not part of any state. Prior to passage of the 1973 District of Columbia Home Rule Act, which devolved certain Congressional powers to an elected mayor and council, the district did not have an elected local government. Even so, Congress retains the right to review and overturn laws created by the council and intervene in local affairs. As it is not a state, the district does not have representation in the Senate. However, since 1971, its residents have been represented in the House of Representatives by a non-voting delegate. Additionally, since 1961, following ratification of the 23rd Amendment, the district has been entitled to select three electors to vote in the Electoral College.
In addition to the 50 states and federal district, the United States has sovereignty over 14 territories. Five of them (American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands) have a permanent, nonmilitary population, while nine of them do not. With the exception of Navassa Island, Puerto Rico, and the U.S. Virgin Islands, which are located in the Caribbean, all territories are located in the Pacific Ocean. One territory, Palmyra Atoll, is considered to be incorporated, meaning the full body of the Constitution has been applied to it; the other territories are unincorporated, meaning the Constitution does not fully apply to them. Ten territories (the Minor Outlying Islands and American Samoa) are considered to be unorganized, meaning they have not had an Organic Act enacted by Congress; the four other territories are organized, meaning they have had an Organic Act that has been enacted by Congress. The five inhabited territories each have limited autonomy and a non-voting delegate in Congress, in addition to having territorial legislatures and governors, but residents cannot vote in federal elections.

View More On Wikipedia.org
  1. R

    Oscillation of a bound particle in a superposition of states

    Homework Statement A bound particle is in a superposition state: \psi(x)=a[\varphi_1(x)e^{-i\omega_1t}+\varphi_2(x)e^{-i\omega_2t}] Calculate <x> and show that the position oscillates. Homework Equations <x>=\int_{-\infty}^{\infty} \psi(x) x \psi^*(x) \mathrm{d}x The Attempt at a...
  2. S

    Energy Gap of 2 states in a deep rectangular potential well.

    What is the energy gap between the ground state (n=0) and the first excited state (n=1) of an electron trapped in a deep rectangular potential well of width 1Å?
  3. A

    I Density of States -- alternative derivation

    I am trying to understand the derivation for the DOS, I get stuck when they introduce k-space. Why is it necessary to introduce k-space? Why is the DOS related to k-space? Perhaps if someone could come up to a slightly different derivation (any dimensions will do) that would help. My doubt ELI5...
  4. L

    A States in usual QM/QFT and in the algebraic approach

    Studying QFT on curved spacetimes I've found the algebraic approach, based on ##\ast##-algebras. In that setting, a quantum system has one associated ##\ast##-algebra ##\mathscr{A}## generated by its observables. Here we have the algebraic states. These are defined as linear functionals...
  5. F

    I Can the Time Independent Schroedinger Equation Be Used to Find Unbound States?

    Hello Forum, Just checking my correct understanding of the following fundamental concepts: Stationary states: these are states represented by wavefunctions ##\Psi(x,y,z,t)## whose probability density function ##|\Psi(x,y,z,t)|^2 = |\Psi(x,y,z)|^2##, that is, the pdf is only a function of space...
  6. nomadreid

    I Can a Pure State be Interpreted as a Mixed State for a Single Particle?

    A pure state can be interpreted as belonging to a system, but it can also be interpreted as belonging to a single particle (although the resulting probability is in respect to the system), and as I understand it, this is now the preferred interpretation. But in...
  7. H

    I Question about one-particle states

    From Weinberg's Quantum Theory of Fields vol 1. In Chapter 2.5, he lists the transformation rule of a one-particle state under a homogeneous Lorentz transformation: \begin{equation} U(\Lambda)\Psi_{p,\sigma} = \sum_{\sigma'}C_{\sigma'\sigma}(\Lambda,p)\Psi_{{\Lambda}p,\sigma'} \end{equation}...
  8. I

    Two States of Polarization of EM Waves

    I am studying about the cavity radiation inside a metallic cube. In the textbook it states that there are two independent waves corresponding to the two possible states of polarization of electromagnetic waves. What does it mean by this? (My current assumption is the phase change of the waves)...
  9. F

    I Orbital electrons in stationary states?

    My textbook in elementary Q.M. stated that orbital electrons in an atom must have stationary state wavefunctions. Was this just a simplification, the truth being maybe that their wavefunctions can be nonstationary for a little while, but soon decay into stationary ones? I’ve seen an answer...
  10. sumit_1

    The lifetime of the excited states of a hydrogen atom?

    How can we differentiate among the lifetimes of the excited states of the hydrogen atom? The states are: 2p, 2s, 3s, 3p
  11. F

    I Liquid-gas phase transition: metastable mixed states?

    Hello everybody. I am trying to understand better what happens at a liquid-gas phase transition for the Van Der Waals model. From what I have understood, from the Van Der Waals model we are able to plot the curve P(V) and to calculate the free energy F. Here are such curves : Then, we...
  12. EastWindBreaks

    Heated piston & cylinder device with saturated water and vapor states

    [Mentor note: Thread title changed to describe actual problem being presented] 1. Homework Statement Homework Equations The Attempt at a Solution I understand you have to interpolate temperature and pressure of the saturated vapor from the table, since there is no matched final specific...
  13. binbagsss

    QFT T-duality, Massless vector states

    Homework Statement Part C) Please: Homework Equations above,below The Attempt at a Solution so I think I understand the background of these expressions well enough, very briefly, changing the manifold from ## R^n ## to a cylindrical one- ##R^{(n-1)}^{+1}## we need to cater for winding...
  14. binbagsss

    Electromagnetic Lagrangian, EoM, Polarisation States

    Homework Statement Attached: Homework Equations Euler-Lagrange equations to find the EoM The Attempt at a Solution [/B] Solution attached: I follow, up to where the sum over ##\mu## reduces to sum over ##\mu=i## only, why are there no ##\mu=0## terms? I don't understand at all. Many...
  15. Grands

    Which are the stronger sectors in the United States (GDP)?

    Hi. Does someone that know more about US economy can help me in answering this question? Which are the most profitable sectors in the USA that create a so high GDP? The manufactural one ? For example my country ( Italy) have a great tourism sector, almost in every periodo f the year people...
  16. T

    I Little issue regarding physical states

    Consider the QM postulate which states that physical states are represented by rays in a Hilbert space. Consider a ray ##R##. An observer from other frame will have a correspoding ##R'## which can be either - equal to ##R## or, - not equal to ##R## Suppose the two frames are inertial frames...
  17. jedishrfu

    Harvard Scientists Create New States of Light

    Scientists are exploring new states of light with orbital angular momentum https://futurism.com/harvard-scientists-made-material-creates-completely-new-states-light/ Research paper http://science.sciencemag.org/content/early/2017/11/01/science.aao5392
  18. A

    I Fubini-Study metric of pure states

    Hello PF! I was reading https://en.wikipedia.org/wiki/Fubini–Study_metric (qm section like always :wink:) And can't figure out how to derive: \gamma (\psi , \phi) = arccos \sqrt{\frac{<\psi|\phi><\phi|\psi>}{<\psi|\psi><\phi|\phi>}} I started with \gamma (\psi , \phi) =|| |\psi> - |\phi>||=...
  19. D

    I Superposition States: Is TDSE & TISE Satisfied? Check Here

    Hi. I just want to check that I understand the following. If I have a general superposition of wavefunctions satisfying the TDSE then that superposition also satisfies the TDSE. But that superposition only satisfies the TISE if the energies are degenerate because the TISE is an eigenvalue...
  20. S

    1D atomic chain, Localized states

    Homework Statement 1D atomic chain with one atom in the primitive cell and the lattice constant a. The system in described within the tight binding model and contains N-->∞ primitive cells indexed by the integer n. The electronic Hamiltonian is $$H_{0} = \sum_{n} (|n \rangle E_{at} \langle n |...
  21. binbagsss

    String Theory, Number Operator , Mass of States

    Homework Statement I have the following definition of the space-time coordinates Homework Equations Working in a certain gauge we can also do: From which we can find: Where ##N_{lc} ## sums over the transverse oscillation modes only. The Attempt at a Solution [/B] MY QUESTION: I...
  22. Ian Mitchell

    I Heavier hydrogen-like bound states?

    Before I begin, I would like to say what I am about to ask would require some sort of top-top-bottom bound state for it to function. Which (to my knowledge) has not been experimentally or theoretically predicted. Also, in case if you are wondering- no, this is not a homework question. --- So...
  23. B

    Fock states as integrals of coherent states

    Edit: I'm pretty sure I have answered my own question. I think I need to sandwich the integral between a bra and ket to pick out one term from the sum. 1. Homework Statement Show that a Fock state ##|n\rangle## can be represented by the integral $$|n\rangle = \frac{\sqrt{n!}}{2 \pi r^n}...
  24. T

    I Exploring Multi Particle States: Fermions vs. Bosons

    In general, is it of more interest to consider multi particle states consisting of fermions & bosons or multi particle states consisting of only fermions (or only bosons)? I have seen that if it's of the latter type, then the study becomes in certain way more easy to carry on, though the former...
  25. WeiShan Ng

    Number of individual states with the same occupation numbers

    Homework Statement A state of a system of many noninteracting particles can be specified by listing which particle is in which of the accessible single particle states. In each microscopic state we can identify the number of particles in a given single particle state ##k##. This number is...
  26. D

    B Superposition or just unobserved states?

    Can the kind members of this forum please help me make the logical leap from an entangled pair of electrons or photons to that of the pair being in a superposition where the observation of one effects the state of the other? For example, my understanding is that, through the conservation of...
  27. WeiShan Ng

    I [Stat Phy] What does exhausting the states of a system mean?

    I was reading the *Statistical Physics An Introductory Course* by Daniel J.Amit and need some help to understand a certain passage: In an isolated composite system of two paramagnetic system: System a with ##N_a## spins and a magnetic field ##H_a ## System b with ##N_b## spins and a...
  28. A

    A Bound states and the energy-momentum relation....

    Hi all - forgive me, I'd asked a series of questions in a previous post that was deemed to be circular, but I still didn't obtain a satisfactory answer to the question I was asking. In this post, I'm going to try to be very careful to use terms that are at least less 'misplaced', per se...
  29. A

    A Observable particles as asymptotic states....

    I've read Arnold Neumaier's excellent Insight article on virtual particles, but I'm very confused about one thing: Observable particles are considered to be on-shell, and as 'asymptotic states' at time +- infinity. Now, in a scattering experiment, I may produce a new particle, which will travel...
  30. T

    I Photon states should not evolve?

    Since proper time for photons doesn't change, i.e. in their reference frame time doesn't change, then it should be that photons don't change their quantum mechanical state, or the equivalent in Maxwell's theory. One could say, well they don't experience time, but we do. Okay, but since their...
  31. A

    I Principle of superposition of states

    Upon reading Landau QM, the Principle of superposition of states, I got confused. It states (and i quote): "Suppose that, in a state with wave function Ψ1(q), some measurement leads with certainty to a definite result 1, while in a state with Ψ2(q) it leads to a different result 2. Then it is...
  32. sweet springs

    B Is a pure state a kind of mixed states?

    Hi. 1. Does a pure state belong to mixed states \hat{\rho}=\sum_k p_k|\psi_k><\psi_k| where ##p_k=1## for k=i and otherwise 0 ? 2. Does quantum jump by observation work for both mixed and pure states ? Your teachings will be appreciated.
  33. S

    I Lie Algebra states of a representation

    Hello! I am reading some representation theory/Lie algebra stuff and at a point the author says "the states of the adjoint representation correspond to generators". I am not sure I understand this. I thought that the states of a representation are the vectors in the vector space on which the...
  34. A

    A Are all edge states topological?

    Hey am new to this forum but I have a question regarding topologically protected states.. Let's suppose we have a 1D gapped system divided two to distinct regions that have different periodicity or different properties and that at the centre, where the two regions 'meet' states appear in the...
  35. E

    I Decoherence Pure States Into Mixed States

    According to decoherance. Say there is a pure state initially in state: |ψ⟩=α|0⟩+β|1⟩ After decoherance (interaction with environment), the system will transform into the improper mixed state of: ρ=|α|2|0⟩⟨0|+|β|2|1⟩⟨1| This is the "apparent" collapse that decoherance refers to. With the...
  36. SchroedingersLion

    I Mixed states vs pure states - physical POV

    Hey guys, I am having issues with understanding the physical nature of pure and mixed states. Maybe you can help me out? 1) A pure state - superposition is a state that consists of different states at the same time. It's like having several waves, each one belonging to an Eigenstate of the...
  37. P

    A Localized states and density of states

    Hello, Let's suppose we have a two dimensional lattice which is periodic along certain direction, say x-direction, allowing us to define a quasi momentum k_x. The lattice is not periodic along the y-direction (perpendicular to x-direction). Therefore, we are able to obtain the band structure...
  38. Danny Boy

    A Is the overlap of coherent states circular symmetric?

    What I am interested in doing, is considering the angular momentum eigenstate for a spin ##1## system: ##|J=1, M=1\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}##, forming the coherent state ##|CS \rangle = \begin{bmatrix} 0.5 \\ -\frac{i}{\sqrt{2}} \\ -0.5...
  39. B

    Equation of states for a gas that forms dimers

    Homework Statement Show that to a first approximation the equation of state of a gas that dimerizes to a small extent is given by, ##\dfrac{PV}{RT} = 1 - \dfrac{K_c}{V}## Where ##K_c## is equilibrium constant for ##A + A \iff A_2## Homework EquationsThe Attempt at a Solution Using virial...
  40. B

    Correlations in Spin-Singlet states

    Homework Statement Homework EquationsThe Attempt at a Solution In (b), if particle B has up spin (x-axis), then A should have down-spin(x-axis). The problem ask the state by using lma,mb> state. This state is valid only in z-axis, but how can i represent that state ?? I think the answer is...
  41. JulienB

    3D quantum harmonic oscillator: linear combination of states

    Homework Statement Hi everybody! In my quantum mechanics introductory course we were given an exercise about the 3D quantum harmonic oscillator. We are supposed to write the state ##l=2##, ##m=2## with energy ##E=\frac{7}{2}\hbar \omega## as a linear combination of Cartesian states...
  42. Noora Alameri

    I Partially entangled(W), Maximally and disentangled states

    Hi, How can I give a good summary about the main and real difference between these three states? physically and mathematically. Thanks
  43. S

    I Do the vacuum states created by soft photons have vacuum flu

    Putting a soft photon in vacuum will result in a zero energy vacuum state. Despite the zero energy, has this state vacuum fluctuations? Putting more of these photons will result in more vacuum states. Would they have vacuum fluctuations as well resulting in more vacuum flctuations? A total...
  44. Benoit

    Bonding and antibonding states of hybridized molecules

    Hey there, With covalent bonds, we have bonding and antibonding states. If we now have, let's say sp or sp2 states, doesn't matter, is there an equivalent bonding or antibonding state related to this sp bond ? I mean, why sp states wouldn't have antibonding states like every normal covalent bond ?
  45. J

    A Exploring Experimental Techniques for Preparing Quantum States

    Hello everyone, We come to the end of another semester and its presentation time. I have chosen to discuss how to prepare different quantum mechanical systems for various applications. So my question for you guys is, are there any interesting experimental techniques I should look into. I am...
  46. H

    I Energy and states of a particle in a box.

    Suppose we have a classical particle in box. The number of degrees of freedom is 6. The position of the particle and its momenta. Now if we want to calculate the entropy of the system as a function of the energy we only need to find a relation between all the possible states the particle can be...
  47. J

    I Why is the total number of quantum states = 2n^2 for some n?

    If the number of possible values of L is n, and the number of possible values of m is 2*L-1, and there are 2 spin directions.. shouldn't the total number of states be 2*(number of possible L)*(Number of possible m)? But this gives 4n^2 - 2n. I am extremely confused. Thanks for your help!
  48. M

    I Are superposition states observable?

    The way I am coming to understand it, the allowed states that an observable can be "observed/measured" in are defined by the eigenvectors (and associated eigenvalues) of the observable's operator. Since those eigenvectors form a basis and span the space of vectors defined by the operator, a...
Back
Top