What is Function: Definition and 1000 Discussions

In mathematics, a function is a binary relation between two sets that associates to each element of the first set exactly one element of the second set. Typical examples are functions from integers to integers, or from the real numbers to real numbers.
Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept.
A function is a process or a relation that associates each element x of a set X, the domain of the function, to a single element y of another set Y (possibly the same set), the codomain of the function. It is customarily denoted by letters such as f, g and h.If the function is called f, this relation is denoted by y = f (x) (which reads "f of x"), where the element x is the argument or input of the function, and y is the value of the function, the output, or the image of x by f. The symbol that is used for representing the input is the variable of the function (e.g., f is a function of the variable x).A function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function. When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane. The set of these points is called the graph of the function; it is a popular means of illustrating the function.
Functions are widely used in science, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics.

View More On Wikipedia.org
  1. T

    A When KE is a function of position

    Hi all In the Lagrangian, we have L = KE - PE In most cases, I have seen KE as a function of q and q-dot (using the generic symbols). However I first learned how KE = 0.5 m * v-squared. Later, I used generalized coordinates and THAT is when KE became a function of q. I get all that...
  2. M

    Mathematica Fitting solution function of NDSolve with a curve

    The following solves an IVP, giving the output as the function f3[x]: s3 = NDSolve[{(-z1[t]^(3/2) + (1 + z1[t]^2)^(3/4))/( 3 (-z1[t] + Sqrt[1 + z1[t]^2])) == z1[t] z1'[t], z1[0] == 0.0001}, z1, {t, 0, 30} f3[x_] := z1[x] /. First[s3]; My question is, how do I curve fit f3[x] to the...
  3. P

    Proof that given function is convex

    Part 1 ##\left\| \vec{y} \right\|^2 \leq \left\| \vec{y} \right\|^2## and since ##\lambda \in \left[ 0,1 \right] \Rightarrow \lambda^2 \leq \lambda## So ##\lambda^2 \left\| \vec{y} \right\|^2 \leq \lambda \left\| \vec{y} \right\|^2 ## Part 2 ##\left\| \vec{x} \right\|^2 \leq \left\| \vec{x}...
  4. S

    I Derivative of F = f(x)/f(x+dx)

    Hello, I'm struggling with this for some time. So I have the function: f(x) = sqrt(1 - 1/x) The derivative of this function can be easily calculated. Now we define the function: F(x) = f(x)/f(x + dx) = sqrt(1 - 1/x)/sqrt(1 - 1/(x+dx)) I have a hard time to find F'(x) due to the presence of...
  5. R

    Finding the maximum of a function

    Why does f attain its local maximum at r' in (p,q). Is it because we have f(x)<= f(r') for all x in (p,p+delta)?
  6. Z

    How to choose the correct function to use for a Taylor expansion?

    Consider two different Taylor expansions. First, let ##f_1(s)=(1+s)^{1/2}## $$f_1'(s)=-\frac{1}{2(1+s^{3/2})}$$ Near ##s=0##, we have the first order Taylor expansion $$f_1(s) \approx 1 - \frac{s}{2}$$ Now consider a different choice for ##f(s)## $$f_2(s)=(1+s^2)^{1/2}$$...
  7. brotherbobby

    Line integral of a scalar function about a quadrant

    Problem : We are required to show that ##I = \int_C x^2y\;ds = \frac{1}{3}##. Attempt : Before I begin, let me post an image of the problem situation, on the right. I would like to do this problem in three ways, starting with the simplest way - using (plane) polar coordinates. (1) In (plane)...
  8. mcastillo356

    I A function with no max or min at an endpoint

    Hi, PF Although a function cannot have extreme values anywhere other than at endpoints, critical points, and singular points, it need not have extreme values at such points. There is an example of how a function need not have extreme values at a critical point or a singular point in 9th edition...
  9. R

    Fourier series, periodic function for a string free at each end

    From the statement above, since the ring is massless, there's no force acting vertically on the rings. Thus, the slope is null. ##\frac{\partial y(0,0)}{\partial x} = \frac{\partial y(L,0)}{\partial x} = 0## ##\frac{\partial y(0,0)}{\partial x} = A\frac{2 \pi}{L}cos(\frac{2 \pi 0}{L}) =...
  10. Hamiltonian

    I Writing the wave function solutions for a particle in a 2-D box

    The final wave function solutions for a particle trapped in an infinite square well is written as: $$\Psi(x,t) = \Sigma_{n=1}^{\infty} C_n\sqrt{\frac{2}{L_x}}sin(\frac{n\pi}{L_x}x)e^{-\frac{in^2{\pi}^2\hbar t}{2m{L_x}^2}}$$ The square of the coefficient ##C_n## i.e. ##{|C_n|}^2## is...
  11. LUFER

    I Plasmonic - Dielectric function

    Regarding the electrical permittivity of the metal in a high frequency regime, I cannot find research material related to the lead dielectric function (PD). I can't get the matatrial as values, I'll let you comment on that. I know that Pd can inhibit the amount of gamma rays in the x-ray case...
  12. P

    A $\phi^4$ in $4 - \epsilon$ dimension renormalization beta function

    Hi all, I am currently studying renormalization group and beta functions. Since I'm not in school there is no one to fix my mis-understandings if any, so I'd really appreciate some feedback. PART I: I wrote this short summary of what I understand of the beta function: Is this reasoning...
  13. L

    I Second derivative of chained function

    Let's say we have a function ##M(f(x))## where ##M: \mathbb{R}^2 \to \mathbb{R}^2## is a multivariable linear function, and ##f: \mathbb{R} \to \mathbb{R}^2## is a single variable function. Now I'm getting confused with evaluating the following second derivative of the function: $$ [M(f(x))]''...
  14. patric44

    Checking if a function is an equipotential surface

    hi guys I came across that theorem that could be used to check if a surface represented by the function f(x,y,z) = λ could represent an equipotential surface or not, and it states that if this condition holds: $$\frac{\nabla^{2}\;f}{|\vec{\nabla\;f}|^{2}} = \phi(\lambda)$$ then f(x,y,z) could...
  15. Physil

    An expression for the vertical velocity as a function of time

    A rocket of initial mass m0 is launched vertically upwards from the rest. The rocket burns fuel at the constant rate m', in such a way, that, after t seconds, the mass of the rocket is m0-m't. With a constant buoyancy T, the acceleration becomes equal to a=T/(m0-m't) -g. The atmospheric...
  16. S

    MHB Interpolating Points with Continuous Modular Functions?

    Define a continuous function F(x;n) that interpolates points (x, x mod n) for a given integer n and all integer x. For example F(x;2)=\frac{1}{2}-\frac{1}{2}\cos\left(\pi x\right) interpolates all points (x, x mod 2) when x is an integer. Similarly F(x;3) should interpolate points (0,0), (1,1)...
  17. MechEEE

    Transfer function with initial conditions (DE)

    I have a differential equation of the form y''(t)+y'(t)+y(t)+C = 0. I think this implies that there are non-zero initial conditions. Is it possible to write a transfer function for this system? This post...
  18. S

    Using the sin function for a problem with a frictionless pulley and an incline

    To find the tension in the rope connecting 6.0 kg block and 4.0 kg block we do 6.0 kg = m1, 4.0 kg = m2, 9.0 kg = M (m_2 + m_1)a - Ma = Mg - m_2 gsin\theta - m_1 gsin\theta Why do we use sin in these equations and not cos?
  19. docnet

    Prove that a function from [0,1] to [0,1] is a homeomorphism

    let ##X=\{0,p1,p_2,...,p_n,1\}## and ##Y=\{0,p1,p_2,...,p_n,1\}## be sets equipped with the discrete topology. for each ##q_i## in ##Y##, the inverse image ##h^{-1}(q_i)=p_i## is open in ##X## w.r.t. to the discrete topology, so h is continuous. every element y in Y has a preimage x in X, so h...
  20. docnet

    Prove that the concatenation function is continuous

    Let f be continuous in [0,1] and g be continuous in [1,2] and f(1)=g(1). prove that $$ (f*g)= \begin{cases} f(t), 0\leq t\leq 1\\ g(t), 1\leq t \leq2 \end{cases}$$ is continuous using the universal property of quotient spaces. Let ##f:[0,1]→X## and ##g:[1,2]→Y## f and y are continuous, thus...
  21. Mikaelochi

    I Doing proofs with the variety function and the Zariski topology

    I included this image because it is easier than typing it out. Anyway, this is an old problem I need to catch up on. I have a clue as to how to do part a. I could say given an x that is a member of ∩V(Ai) which implies that x is a member of V(Ai) for ∀i. Then we can say ∀i all polynomials are in...
  22. M

    A Array variable of envelope function (parameter representation)

    Hi, I have a question regarding the envelope function in parameter representation. Let an array of curves in cartesian coordinates be given in parameter representation, with curve parameter 𝑡 and array variable 𝑐 𝑥=𝑥(𝑡,𝑐) 𝑦=𝑦(𝑡,𝑐) Condition for envelope is: 𝜕/𝜕𝑡 𝑥(𝑡,𝑐) 𝜕/𝜕𝑐 𝑦(𝑡,𝑐)=𝜕/𝜕𝑐...
  23. Vividly

    I Question about Inverse Derivative Hyperbola function

    Im confused about a certain part of solving an equation. So I used the hyerbola formula to find the answer but I think I did the math wrong. X^2-y^2=c^2 X=1 Y= (2x^5-1)^2 I did the calculations as you can see in the picture but I know I messed up on the square root part. When you square one...
  24. I

    How can I plot the function g(x) = sin(πn/L) x and its corresponding g²(x)?

    Summary:: We are currently studying basics of quantum mechanics. I'm getting the theory part but it's hard to visualise everything and understand. We are given this question to plot the function so if someone could help me in this. Plot the following function and the corresponding g²(x) g(x)...
  25. LCSphysicist

    Find the intensity as function of y (interference between two propagating waves)

    Let a spherical wave propagate from the origin, $y = ADcos(wt-2\pi r/ \lambda)/r$. Also, let a plane wave propagate parallel to the x axis, $y = Acos(wt-2\pi r/ \lambda)$. At x = D there is a flat screen perpendicular to the x axis. Find the interference at the point y on the screen as function...
  26. laserdan

    A Rate and function to fill a theoretical vacuum

    I am trying to find a way to determine the rate and function that would describe how a theoretical vacuum (let's say a cubic centimeter) would repopulate with air if surrounded by ambient air at STP. Any suggestions? I am not very good with thermodynamic or kinetic theory. My current work...
  27. Jarvis323

    I Which kind of function is this?

    I'm curious how close someone could get to guessing the functions that generated the data shown below. And also, without looking at the plot, what do you think would be the most interesting looking function of x,y,z you can think of. A) B) C)
  28. Mikaelochi

    I Proving a function f is continuous given A U B = X

    Basically with this problem, I need to show that f is continuous if A and B are open and if A and B are closed. My initial thoughts are that in the first case X must be open since unions of open sets are open. My question is that am I allowed to assume open sets exist in Y? Because then I can...
  29. F

    "Trick" for a specific potential function defined with an integral

    Hello, To first clarify what I want to know : I read the answer proposed from the solution manual and I understand it. What I want to understand is how they came up with the solution, and if there is a way to get better at this. I have to show that, given a vector field ##F## such that ## F ...
  30. docnet

    Prove that a locally constant function is constant on a connected X

    Let $X$ be a topological space and ##Y## a set. A function ##f: X \to Y## is said to be locally constant if, for every ##x \in X##, there is an open set ##U## containing ##x## so that the restriction ##f|_U: U \to Y## is constant. Prove that if ##X## is connected, a locally constant function on...
  31. R

    How to find the residue of a complex function

    Hi, I'm trying to find the residue of $$f(z) = \frac{z^2}{(z^2 + a^2)^2}$$ Since I have 2 singularities which are double poles. I'm using this formula $$Res f(± ia) = \lim_{z\to\ \pm ia}(\frac{1}{(2-1)!} \frac{d}{dz}(\frac{(z \pm a)^2 z^2}{(z^2 + a^2)^2}) )$$ then, $$\lim_{z\to\ \pm ia}...
  32. Mayhem

    Particle in a box: Finding <T> of an electron given a wave function

    If ##\hat{T} = -\frac{\hbar}{2m}\frac{\mathrm{d^2} }{\mathrm{d} x^2}##, then the expectation value of the kinetic energy should be given as: $$\begin{align*} \left \langle T \right \rangle &= \int_{0}^{L} \sqrt{\frac{2}{L}} \sin{\left(\frac{\pi x}{L}\right)}...
  33. J

    Is the magnetic field B→. a state function and exact differential?

    is the magnetic field B→. a state function and exact differential? I argued that it's a state function, what do you guys think
  34. chwala

    Find the domain of the inverse of a function

    This is a textbook problem: now for part a) no issue here, the range of the function is ##-1≤f(x)≤299## now for part b) i got ##x≥-1## but the textbook indicates the solution as ##x≥0## hmmmmm i think, that's not correct...
  35. Arman777

    I What is the function that describes this Asymptotic behaviour?

    I would like to find a function such that for $$a(x) \rightarrow 1~\text{for}~(x \gg x_c)$$ $$a(x) \rightarrow f(x)~\text{for}~(x \ll x_c)$$ What could be the ##a(x)## ? I have tried some simple functions but could not figure it out. Maybe I am just blind to see the correct result.
  36. K

    A Dissipation function is homogeneous in ##\dot{q}## second degree proof

    We have Rayleigh's dissipation function, defined as ## \mathcal{F}=\frac{1}{2} \sum_{i}\left(k_{x} v_{i x}^{2}+k_{y} v_{i j}^{2}+k_{z} v_{i z}^{2}\right) ## Also we have transformation equations to generalized coordinates as ##\begin{aligned} \mathbf{r}_{1} &=\mathbf{r}_{1}\left(q_{1}, q_{2}...
  37. PainterGuy

    Random variable and probability density function

    Hi, I was trying to solve the attached problem which shows its solution as well. I cannot understand how and where they are getting the equations 3.69 and 3.69A from. Are they substituting the values of θ₁ and θ₂ into Expression 1 after performing the differentiation to get equations 3.70 and...
  38. tixi

    Finding analyticity of a complex function involving ln(iz)

    Hey everyone! I got stuck with one of my homework questions. I don't 100% understand the question, let alone how I should get started with the problem. The picture shows the whole problem, but I think I managed doing the a and b parts, just got stuck with c. How do I find the largest region in...
  39. O

    Arc length of vector function - the integral seems impossible

    The vector equation is ## v(x)=(e^x cos(2x), e^x sin(2x), e^x) ## I know the arc-length formula is ## S=\int_a^b \|v(x)\| \,dx ## I found the derivative from a previous question dealing with this same function, but the when I plug it into the arc-length function I get an integral that I've...
  40. K

    Sketch the function by hand -- I'm confused on how to do this

    Sketch by hand the function determined as f(x) = 1/28 (7√−16x^2 + 16x + 5 + 12) and then From the sketch, determine the domain and range of f in interval notation. Hint: Interpret f as part of a circle. You must include in your solutions the inputs and outputs you used to help you sketch the...
  41. PainterGuy

    I Distribution function and random variable

    Hi, I cannot figure out how they got Table 2.1. For example, how come when x=1, F_X(x)=1/2? Could you please help me with it? Hi-resolution copy of the image: https://imagizer.imageshack.com/img923/2951/w9yTCQ.jpg
  42. R

    Cauchy Riemann complex function real and imaginary parts

    Hi, I have to find the real and imaginary parts and then using Cauchy Riemann calculate ##\frac{df}{dz}## First, ##\frac{df}{dz} = \frac{1}{(1+z)^2}## Then, ##f(z)= \frac{1}{1+z} = \frac{1}{1+ x +iy} => \frac{1+x}{(1+x)^2 +y^2} - \frac{-iy}{(1+x^2) + y^2}## thus, ##\frac{df}{dz} =...
  43. L

    I Understanding relationship between heat equation & Green's function

    Given a 1D heat equation on the entire real line, with initial condition ##u(x, 0) = f(x)##. The general solution to this is: $$ u(x, t) = \int \phi(x-y, t)f(y)dy $$ where ##\phi(x, t)## is the heat kernel. The integral looks a lot similar to using Green's function to solve differential...
  44. Fred Wright

    A What is the unique special function in this integral problem?

    While studying the solution to a integral problem I found online I ran across a special function I am unfamiliar with. The integral is $$ \int_0^{\infty}\frac{t^{\frac{m+1}{n}-1}}{1+t}dt=\mathcal{B}(\frac{m+1}{n},1-\frac{m+1}{n}) $$ This certainly isn't the normal beta function. What is it...
  45. Eclair_de_XII

    B Is it invalid to redefine the sgn function in this way in a proof?

    Let ##S_n## denote ##\{1,\ldots,n\}##, where ##n\in\mathbb{N}##. Recall that the ##\textrm{sgn}## function maps a permutation of ##S_n## to an element in ##\{1,0,-1\}##. We want to rework the definition of ##\textrm{sgn}## because it is not sufficient for some proofs about determinants. For...
  46. Dom Tesilbirth

    How to find the partition function of the 1D Ising model?

    Attempt at a solution: \begin{aligned}Z=\sum ^{N}_{r=0}C\left( N,r\right) e^{-\beta \left[ -NJ+2rJ\right] }\\ \Rightarrow Z=e^{\beta NJ}\sum ^{N}_{r=0}C\left( N,r\right) e^{-2\beta rJ}\end{aligned} Let ##e^{-2\beta J}=x##. Then ##e^{-2\beta rJ}=x^{r}##. \begin{aligned}\therefore Z=e^{\beta...
  47. M

    I Fit a non-linear function to this time series

    I have an experimantally obtained time series: n_test(t) with about 5500 data points. Now I assume that this n_test(t) should follow the following equation: n(t) = n_max - (n_max - n_start)*exp(-t/tau). How can I find the values for n_start, n_max and tau so as to find the best fit to the...
  48. Poetria

    Matrix Function - Check Understanding

    I would say that what this matrix does is rotate e.g. a vector by ##\pi/2## clockwise. Am I right? I would like to check my understanding.
Back
Top