What is Potential: Definition and 1000 Discussions

Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple release of energy by objects to the realization of abilities in people. The philosopher Aristotle incorporated this concept into his theory of potentiality and actuality, a pair of closely connected principles which he used to analyze motion, causality, ethics, and physiology in his aPhysics, Metaphysics, Nicomachean Ethics and De Anima, which is about the human psyche. That which is potential can theoretically be made actual by taking the right action; for example, a boulder on the edge of a cliff has potential to fall that could be actualized by pushing it over the edge. Several languages have a potential mood, a grammatical construction that indicates that something is potential. These include Finnish, Japanese, and Sanskrit.In physics, a potential may refer to the scalar potential or to the vector potential. In either case, it is a field defined in space, from which many important physical properties may be derived. Leading examples are the gravitational potential and the electric potential, from which the motion of gravitating or electrically charged bodies may be obtained. Specific forces have associated potentials, including the Coulomb potential, the van der Waals potential, the Lennard-Jones potential and the Yukawa potential. In electrochemistry there are Galvani potential, Volta potential, electrode potential, and standard electrode potential. In the
thermodynamics, the term potential often refers to thermodynamic potential.

View More On Wikipedia.org
  1. P

    Calculating the speed using Potential graph

    My attempt, pictorially it looks like I am confused with the questions (a). Does the positron emerge from the field at x =0? There is no potential at x=0, so the positron will continue with the same speed hence its motion is not reversed. For the (b). The maximum volt is 200V, if i apply the...
  2. P

    Potential energy of a System of charges

    This is my attempt the system The 1 is the initial configuration where the 3 electron is at infinity. The 2 is the final configuration where the 3 electron is midway.U1 is the potential energy between e1 and e2 U1 = (q1*q2)/(4*π*ε0 * (0.02)^2); // q1, q2 charge of electrons K1 =...
  3. G

    Find the Electric potential from surfaces with uniform charge density

    I do not have the solutions to this problem so I'm wondering if my attempt is correct. My attempt at solution: We have two surfaces which we can calculate the area of. I think we can use gauss law to find the electric field and then integrate the E-field to find the electric potential. So for...
  4. Q

    A Why does the Kähler Potential only contain left handed Weyl spinors?

    Why aren't the right handed Weyl spinors included?
  5. J

    Interaction energy of two interpenetrating spheres of uniform charge density

    I am trying to calculate the interaction energy of two interpenetrating spheres of uniform charge density. Here is my work: First I want to calculate the electric potential of one sphere as following; $$\Phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int...
  6. L

    Energy, current and electrical potential of a particle accelerator 🎆

    Hello, I have answered the question below but would like some advice on whether I can improve my answer or if anyone is able to check whether I have made any mistakes ? i. 1 V = 1eV in a 1:1 relationship, therefore; 6.5 TeV = 6.5 TV = 6.5 *10^12V ii. E=W W=V * Q Q=number of particles * charge...
  7. S

    Trapping stiffness of optical tweezers

    I read in some articles that the force in optical tweezers can be written as: F=kx, with no minus because the force will increase as the distance increased and the particle moves to the source..., This I can understand, but what I can not understand if I make integral (it is conservative force)...
  8. Adesh

    Why the existence of the potential function ##U## is not sufficient?

    In Sommerfeld’s Lectures on Theoretical Physics, Vol II, Chapter 2, Section 6, Page 43 we derive an expression for the equilibrium of liquids as $$ grad ~p = \mathbf F$$ Where ##p## is the pressure and ##F## is the exertnal force. Then he writes, [ The equation above ]includes a very remarkable...
  9. E

    S-wave phase shift for quantum mechanical scattering

    a.) The potential is a delta function, so ##V \left( r \right) = \frac {\hbar^2} {2\mu} \gamma \delta \left(r-a \right)##, therefore ##V \left( r \right) = \frac {\hbar^2} {2\mu} \gamma ## at ##r=a##, and ##V \left( r \right) = 0## otherwise. I've tried a few different approaches: 1.) In...
  10. Bilbo B

    Electric potential of a spherical conductor with a cavity

    Summary:: If the conductor is having a cavity and is provided with some charge, with the cavity too having some charge then how the potential will be affected on the outer surface of the conductor. The center of cavity and the center of hollow sphere does not coincide. As if their centers do...
  11. L

    A Potential step at a Barrier in Quantum mechanics

    In quantum mechanics in books authors discuss only cases ##E<V_0## and ##E>V_0##, where ##E## is energy of the particle and ##V_0## is height of the barrier. Why not ##E=V_0##? In that case for ##x<0## \psi_1(x)=Ae^{ikx}+Be^{-ikx} and for ##x\geq 0## \psi_2(x)=Cx+D and then from...
  12. G

    Finding the potential across capacitors in capacitor-only circuits

    I tried to attempt it by applying KVL to both the loops. I tried to find a possible charge distribution for the capacitors. I guess this is right. On solving I get: from what I know potential difference between M and N is Q1/C2 but the solution is given as: Where am I wrong?
  13. CrosisBH

    Computing the wave function of a square potential

    The book's procedure for the "shooting method" The point of this program is to compute a wave function and to try and home in on the ground eigenvalue energy, which i should expect pi^2 / 8 = 1.2337... This is my program (written in python) import matplotlib.pyplot as plt import numpy as...
  14. T

    Electrical potential energy questions for a battery circuit

    I’m trying to learn about simple circuits but I have a few questions because I don’t fully understand what’s going on . 1. If the reason current flows when a wire is connected to the ends of a battery is due to a potential difference across a battery , why can’t the current just flow through...
  15. Tony Hau

    Potential energy as a function of the square of this angle

    The problem of my question is the b part below: I know that the potential energy is just the gravitational potential energy, which is mgh(𝜃) = mg[(R+b/2)cos𝜃 +R𝜃sin𝜃], derived from the geometry. The equilibrium point is at 𝜃=0 and the system is a stable equilibrium for R>b/2. However, I have no...
  16. C

    Streamlines from a complex potential

    I've been trying this problem for a long time. By operating the lower part of the logarithm and clapping the real and imaginary part of the logarithm, I have come to the conclusion that the correct lines must be those in which it is true that: $ d \ frac {(x ^ 2 + y ^ 2-a ^ 2) ^ 2 + 4y ^ 2a ^...
  17. GhostLoveScore

    Finding the potential energy of a time dependent force

    U=-∫F*v*dt= -∫(m*g/3)*cos(ω*t) dt = -(m*g/3 )* (v/ω )* sin(ω*t) except that according to the official solution, I should be getting positive sign instead of negative. Am I doing something wrong?
  18. hilbert2

    A Ground state energy of cube-like potential wells

    In some other thread someone mentioned that a 3D cubic potential well always has a ground state that is a bound state, but a spherical well doesn't necessarily have if it's too shallow. I calculated some results for 3d cubes, spheres and surfaces of form ##x^{2n}+y^{2n}+z^{2n}=r^{2n}##, which...
  19. L

    Gauge choice for a magnetic vector potential

    How do we verify whether a condition on the magnetic vector potential A constitutes a possible gauge choice ? Specifically, could a relation in the form A x F(r,t) be a gauge , where F is an arbitrary vector field?
  20. Jackoyo

    Solving Electric Field & Potential: Jack Needs Help!

    Hi everyone, I have abit of trouble with this question. Please help! Given charges +q, +2q, −5q and +2q are placed at the four corners ABCD of a square of side a, taken in cylic order from the bottom left corner. Find the electric field E and the potential V at the centre and verify that they...
  21. C

    Potential vector (A) of a disk with a surface current

    Hi, I've been stuck for a long time with this exercise. I am not able to calculate the potential vector, since I do not know very well how to pose the itegral, or how to decompose the disk to facilitate the resolution of the problem. I know that because the potential vector must be parallel to...
  22. QuarkDecay

    B Chemical Potential μ in Solids

    There is the equation: μ= Eu +Eg/2 +3/4kβTln(mu/mc) Eg is the band gap, but I don't understand what Eu stands for and how we can calculate it? Could it be the valence band?
  23. E

    Meaning of potential energy in external fields

    Generally potential energies are associated with a system of two bodies. If more than two bodies are involved the total can be determined by summing the contributions pairwise. It would appear as though in any system, the potential energies are all internal to the system. However in classical...
  24. Mounice

    Solving Potential of a Charge Outside a Sphere with Green Functions

    I was wondering if there is a way to deduce the solution of the potential of a charge outside a sphere given by the image method, though Green functions. Because of a Dirichlet condition (GD(R,r')=0), I know that a solution can be written as GD=Go+L, where ∇2L=0. But in order to approach this...
  25. S

    Comparing Energy Levels in Semi-Infinite and Infinite Potential Wells

    Hello folks, A bit stumped with the following question: Consider a potential well with an infinite wall at x=o and a finite wall at x=a. The height at x=a is such that U0=2E1' where E1' is the energy of the particle's n=1 state in this semi-infinite well. How can one show that E1' is lower...
  26. F

    Action Potential in human cells

    Hello, I understand that the action potential represents a potential difference variation (depolarization) of the voltage across a cell membrane. This concept is generally presented in the context of nerve cells (neurons) as the change in potential across the axon membrane. What about the...
  27. T

    Expressing the magnetic vector potential A-field in terms of the B-field

    We have a retarded magnetic vector potential ##\mathbf{A}(\mathbf{r},t) = \dfrac{\mu_0}{4\pi} \int \dfrac{\mathbf{J}(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3 \mathbf{r}'## And its curl, ##\mathbf{B}(\mathbf{r}, t) = \frac{\mu_0}{4 \pi} \int \left[\frac{\mathbf{J}(\mathbf{r}'...
  28. P

    Effective potential in a central field

    Hi, I am confused by a point which should be relatively simple. When we consider classical motion of a particle in a central field U(r), we write the total energy E = T + U, where T is the kinetic energy. The kinetic energy contains initially r, r' and φ' (where ' denotes the time derivative)...
  29. E

    Clarification of (misleading?) potential energy diagram

    I've seen this figure kicking around, and just wanted to check that I'm not going mad. ##r_{0}## is supposed to be the Bohr radius of the first electron. I don't think this is quite right, since at ##r_{0}## the potential energy is about ##-27eV## or something, so I think they've actually...
  30. E

    Potential energy of a dipole in an external field

    I'm considering the arrangement shown below. Let the positive charge be ##q##, and the negative be ##-q##. To derive the potential energy of this configuration, one usually adds the potential energies of both of the charges in the external field, taking the zero volts equipotential of the...
  31. CrosisBH

    Trouble with Electric Potential Boundaries (Computational Physics)

    This is in python: #ELECTRIC POTENTIAL from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import numpy as np import matplotlib.pyplot as plt dx = 0.1 dy = 0.1 xrange=np.arange(-1,1,dx) yrange=np.arange(-1,1,dy) X,Y = np.meshgrid(xrange, yrange) max_dV = 10e-5 blockRadius = 3...
  32. Blakely42

    Potential Energy vs x phase diagram

    U(x) = - ∫Fdx = - (1/2)kx^2. T = (1/2)m(x')^2. E = (1/2)[m(x')^2 - kx^2]. We could write out the Lagrangian here, but the chapter this comes from (Taylor's Classical Mechanics 13.6) indicates we should probably write the Hamiltonian, H = T + U. As far as I can tell, this doesn't tell me a...
  33. I

    Electrostatics question (Work and Potential)

    a) From X -Y. The work done on the positive charge is negative as the displacement is in the negative y-direction i.e. It is a positive charge moving in parallel to a negative E-field: W= F*(-s) = (+)(-) = - b) Y-Z. The work done is 0. The E-field in the x-direction is 0 as they cancel due to...
  34. P

    QHO: Time dependant expectation value of the potential energy

    Summary:: Linear Quantum harmonic oscillator and expectation value of the potential energy (time dependent) Hello, I have attached a picture of the full question, but I am stuck on part b). I have found the expectation value of the <momentum> and the <total energy> However I am struggling with...
  35. jim mcnamara

    Protein nanowires + Geobacter + humidty = electric potential

    https://phys.org/news/2020-02-green-technology-electricity-thin-air.html I am not competent to judge this (what seems very edgy to me) article. Basically it says: a ten micron thick protein layer with Geobacter on the surface and protein nanowires arranged in a mesh, when exposed to...
  36. threeonefouronethree

    Poisson's equation: Calculating the Laplacian of an electric potential

    First I calculated the electric fields outside of the sphere in terms of the total charge Q. total charge Q: Q = aπR^4 electric field outside: (r>R) E(r) = (1/4πε) Q/r^2 (ε is the vacuum permittivity) electric potential...
  37. cahill

    I Change in chemical potential energy from nuclear decay

    I have been amateur reading about beta decay. The example given for electron capture was krypton-81 into bromine-81. Going from a noble gas to a halogen gives rise to a big change in chemical potential energy. How is this energy accounted for in the equations of the reactant particles and...
  38. S

    Potential difference between the surface of a sphere and a point far away

    V at surface = k Q / r = 9 x 109 x (1 x 109 x (-1.6 x 10-19) / (1 x 10-2) = - 144 V V at a point far away = 0 V From the sentence "electric potential difference between the surface of this sphere and a point far away" means that the question asks about V at surface minus V at far away so the...
  39. Zouatine

    Question about potential for this mechanical force problem

    Hi! hope you are doing well , I'm trying to solve this problem ( mechanical problem) about structure with load F as it showing in the next figure , i want to determine to critical force F , the stability force ( which means if my load is bigger than the critical load my system will be unstable)...
  40. S

    I What force potential should I use for star formations?

    I'm running some molecular dynamic simulations and I came across this, https://en.wikipedia.org/wiki/Star_formation#Cloud_collapse , and I was wondering if there was a specific force potential to use in this case. Supposing I have a ensemble of heated atoms moving around and I cool them down...
  41. S

    Location where the electric potential is zero between charges

    a) I take "a point where it is neutral" as the electric potential at that point is zero. Is this correct? And because the two charges are both negative, there can not be any point where V = 0? Am I wrong or maybe one of the charge should be positive? Thanks
  42. M

    Potential Energy: Rigorous Understanding & E=mc²

    I used to believe that potential energy of a particular particle is of no meaning. It is always linked with a system, and Potential Energy of a system means negative of work done by INTERNAL conservative forces from an initial stage of assumed zero potential energy. And energy cannot be said to...
  43. moeug1999

    Electric Potential at A and B: Find the Answer

    I found the potential at A, however I tried doing it with B but it says I have the wrong answer.
  44. K

    I What is being plotted in the nuclear potential formula by Samuel Wong?

    Hello! In Nuclear Physics, Second Edition, by Samuel Wong he shows a plot of the nuclear potential (see attached) but he also gives a formula (also attached) for the most general way of writing the nuclear potential. In that formula, we have the coefficients depending on r only, but the overall...
  45. Saptarshi Sarkar

    I Why does Special Theory of Relativity leave out Potential Energy?

    While studying Special Theory of Relativity I came across the formula for the energy of a particle. The total energy of a relativistic particle in STR contains the Rest Mass energy and the Kinetic energy. But, in Classical and Quantum Mechanics, we consider the total energy of the particle to be...
  46. B

    Work done to reach the point where the gravitational potential is zero

    Hi there I have been attempting the parts to this question and I'm finding some trouble on how to answer the last part which is d)iii Here is what I have done for the rest of the parts and what I think I should start off with in part d)iii Thanks!
  47. K

    Determine the Electrical potential at a given point

    A rod with a circular center in the middle (which causes the rod to change direction by 90 °) has an evenly distributed linear charge density 𝜆 of electrons along the entire rod. Determine the electrical potential of the red dot in the figure below which is at the center of the circular round...
  48. Decimal

    Magnetic vector potential of a moving current sheet

    Hello, I start by applying the integral for the vector potential ##\vec{A}## using cylindrical coordinates. I define ##r## as the distance to the ##z##-axis. This gives me the following integral,$$\vec{A} = \frac{\mu_0}{4\pi} \sigma_0 v 2 \pi \hat{x} \int_0^{\sqrt{(ct)^2-z^2}}...
  49. I

    Quantum Mechanics Infinite Potential Well -- Check Answers please

    I'm self studying so I just want to ensure my answers are correct so I know I truly understand the material as it's easy to trick yourself in thinking you do! A particle of mass m is in a 1-D infinite potential well of width a given by the potential: V= 0 for 0##\leq## x ##\leq## a =...
Back
Top