What is Energy: Definition and 999 Discussions

In physics, energy is the quantitative property that must be transferred to a body or physical system to perform work on the body, or to heat it. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement in the International System of Units (SI) of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of one metre against a force of one newton.
Common forms of energy include the kinetic energy of a moving object, the potential energy stored by an object's position in a force field (gravitational, electric or magnetic), the elastic energy stored by stretching solid objects, the chemical energy released when a fuel burns, the radiant energy carried by light, and the thermal energy due to an object's temperature.
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.
Living organisms require energy to stay alive, such as the energy humans get from food. Human civilization requires energy to function, which it gets from energy resources such as fossil fuels, nuclear fuel, or renewable energy. The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the Sun and the geothermal energy contained within the earth.

View More On Wikipedia.org
  1. J

    The Greenhouse Effect: Trapping IR Energy through Absorption and Re-emission

    Is the mechanism of greenhouse gases trapping energy emitted as Infra Red radiation by the cooling ground either reflecting back a 50% of the radiated IR energy back to Earth or/and the greenhouse gas molecule becoming excited with the extra energy and essentially becoming hotter? Is it just the...
  2. WMDhamnekar

    MHB How to compute the energy needed to compress the water isothermally?

    Hi, Answer given is $E_n=29.4 Joules$ Here is the question. Answer provided by the Chemistry math expert/Professor is as follows but it is different from the answer given. How is that? Compressibility is the fractional change in volume per unit increase in pressure. For each atmosphere...
  3. R

    B Which one is more efficient in generating high energy Gamma rays?

    According to https://apps.dtic.mil/dtic/tr/fulltext/u2/a351472.pdf the big pulsed power accelerator, HERMES III, generate electron beam with peak energy at 22 MeV and average electron energy at 16 MeV and the resulting photon energy which is bremsstrahlung radiation is approximately 2 MeV...
  4. N

    I Conservation of energy in Everett's MWI

    The question seems similar to the one asked here, https://www.physicsforums.com/threads/energy-in-everetts-many-worlds-interpretation.966266/ but since there didn't seem to be an answer I am asking it again in a slightly different form. I was watching a youtube video where Sean Carroll...
  5. E

    Conservation of Energy Problem (Power)

    Hello there, I was trying to solve this problem. I have no problem with part A and C. But in part B, my guidebook arrived with different answer. Can anybody point out what my mistake is? I am using the same method as the elevator motor problem which states : "A 650-kg elevator starts from rest...
  6. WMDhamnekar

    MHB Coulomb's Constant in electron energy formula.

    Hi, If we multiply $En=-\frac{2\pi^2me^4Z^2}{ n^2h^2} $by $\frac{1}{(4\pi\epsilon_0)^2},$ it is the formula of electron energy in nth Bohr’s orbit. Why we should multiply it by $\frac{1}{ (4\pi\epsilon_0)^2}$ a Coulomb's constant in electrostatic force? Where m=mass of electron, e= charge...
  7. rumborak

    I am confused about the meaning, and value, of kinetic energy

    This confusion has lingered in the back of my mind for years now, would be good for me to finally get a grasp on this. Say I have an object currently at rest, and I use energy X to accelerate it to speed v. According to the standard formula, it now has a kinetic energy 1/2mv^2. Now I use the...
  8. maistral

    Helmholtz free energy for mixing?

    Hi, I have been reading a few literature regarding excess Helmholtz energy and I encountered this definition from the paper of Wong and Sandler (apparently, from the mixing rule used in a EOS): In particular, the ones in the red boxes. How did these equations come into being? I tried to look...
  9. Z

    Energy of a particle in an Infinite square well?

    Here are the results from the python code: Odd results: Even results: I tried to solve for energy using the equation: I substituted the value for a as 4, as in the code the limit goes from -a to a, rather then 0 to a, and hence in the code a = 2, but for the equation it would equal to 4...
  10. greg_rack

    Kinetic energy transformed in a collision involving coalescing particles

    This problem got me kinda confused since I cannot really understand the question... who tells me how the energy dissipated in this case? Has it all transformed into heat to cause the coalesce of the two particles, or ar the two particles now merged together still traveling with a certain amount...
  11. M

    Physics C: Mechanics - Negative Energy and Potential Energy Curves

    I'm currently taking a course where we are working to teach older physics concepts and combine them with calculus. I was assigned to work on teaching a unit about energy; for the most part, it stays relatively consistent and can be solved algebraically. Another topic in this unit is Potential...
  12. T

    Conservation of Mechanical Energy

    Okay For a this is what I did. a. I'm confused about B. I understand that it has something to do with the Conservation of Mechanical Energy, but I don't exactly know what to do.
  13. M

    Explosion energy dissipation and Ek

    Hello, I think the only energy involved is kinetic energy. So I subtract to get the difference between two stages to find the energy cost by explosion. (0.5*9.6*14.6^2)-(0.5*0.2*2.4^2)=1022.59J However the system said that this answer is wrong, So I wondered where did I make a mistake?
  14. kostasstefan

    I Energy Transfer Through Materials

    Hi and thanks for taking the time to read my question. So, if i take an element and place it on top of another element and heat it, will the heat energy pass through the first and charge the other or it'll melt both elements? Thanks!
  15. JayJ

    I Why does energy travel in waves?

    Hi all- Im new. Had a weird thought and when researched I only found the answer of bc that’s how we observe it. question. Why does energy travel in waves? Bc that’s how we see it? can anyone explain to me why energy moves in waves and not a straight line? Thanks to all who help me rid...
  16. E

    B Calculating the Total Energy of a lattice w/ the Madelung constant

    For an ionic lattice, the contribution to the electric potential energy from a single ion will be ##U_i = \sum_{j\neq i} U_{ij}##, which can be expressed as$$\begin{align*}U_i &= -6 \left( \frac{z_+ z_- e^2}{4\pi \varepsilon_0 r_0} \right) + 12 \left( \frac{z_+ z_- e^2}{4\pi \varepsilon_0...
  17. wcjy

    Rotational dynamics and the conservation of energy

    I = Icm + mr^2 I = 0.5 mr^2 + mr^2 I= 3/2 mr^2 By COE, mgh = 0.5(3/2 mr^2)(w^2) g(2r) = 3/4(r^2)(w^2) 8g/3 = rw^2 = v^2 / r v = sqrt( 8gr/3) v=0.511m/s ans: v=0.79m/s
  18. E

    B What is Energy? A Clear Definition and Explanation

    Hello there, I have heard countless times about the word energy, but I still don't know what exactly an energy is. Like for example, we know the definition of a physical quantity called velocity which by definition is change in displacement (so we can easily describe what a velocity is). We...
  19. Adams2020

    Mass difference due to electrical potential energy

    I do not really know the relationship between potential energy and mass difference. Isn't the difference in mass of protons and neutrons due to their quarks? (the neutron is made of two down quarks and an up quark and the proton of two up quarks and a down quark.) Please help.
  20. J

    Gravitational Potential & Gravitational Potential Energy

    Hi, I am confused about the negative aspect of these quantities. The definition in my book for gravitational potential is: "The work done to move a unit mass from infinity to a point in a gravitational field" I understand that the work done is negative because gravity is doing the work if you...
  21. Adams2020

    I Loss of electron & proton energy due to radiation

    Can you compare the energy loss of electrons and protons due to the radiation they emit? In fact, I want to know which of the two loses more energy when it emits radiation.
  22. I

    Why Does Ionization Energy Increase Differently Between Orbital Types?

    There is a large increase in ionization energy when an electron is removed from a p orbital versus when it is removed from a s orbital (and likewise when it is removed from the valence shell and from the inner shells). Why is there a smaller increase when successive electrons are removed from...
  23. S

    A High energy symmetry breaking and laws of physics?

    In some models of the beginning of the universe, like for example in chaotic inflation, space would stop expanding in some points, creating Hubble volumes that could experience different spontaneous symmetry breaking, which would result in different properties, such as different physical...
  24. P

    A Is there a vibration energy term associated with mesons?

    Hello, I am learning about solutions of the Schrodinger equation including the term of rotational energy (i.e. L^2 /2I, in its quantized form) and I was wondering if there should be another quantum term describing vibrational states of hadrons or any other composite subatomic particle, in...
  25. Gh778

    B Energy to increase the radius of a circle composed of several disks

    Hi, I take a big number of disks to composed a circle of a radius of 1 m, the blue curved line is in fact several very small disks: I take a big number of disks to simplify the calculations, and I take the size of the disks very small in comparison of the radius of the circle. The center A1 of...
  26. K

    Photoelectric effect and continuous energy function

    E=hf-W where W is a work function. However we know that electrons in an atom will be excited only when radiated with photons of n*f0 discrete number of frequencies. where E=hf-W is a continuous function. Is this because energy level is continuous within a conductor? If we think of only...
  27. Data Base Erased

    Electrostatic energy of concentric shells

    I know the energy is ##\frac{q²}{ 8 \pi \epsilon_{0}}( \frac{1}{a} - \frac{1}{b})##, but I can't get this result using the second equation. What I did: ##W = \frac{1}{2} \int \rho V d \tau ## ##\rho = \frac{q}{ \frac{4}{3} \pi r³}, a < r < b ## ##V = \frac{q}{4 \pi \epsilon_{0} r}## ## W =...
  28. Sj4600

    Electric Potential Energy Question: Electron and Proton accelerating between charged plates

    Ve=0m/s Vp= 0m/s Qe/Qp= 1.60E-19 Me=9.11E-31 Mp-1.67E-27 Ive pretty much gathered all of the equations I think I need to solve the problem. I just am stuck. The last step I realize that the forces would be equal to each other so I have mp x ap = me x ae but then when I try to solve for the...
  29. htam9876

    I The Energy - Momentum Equation vs the Energy - Mass Equation

    First, introduce the energy – momentum equation E² = p²c² + (m0c²)². Next, just think it in natural way. If the energy – momentum equation reflects the stationary situation, then, momentum p naturally equals to zero. Then, we got E² = 0 + (m0c²)², namely: E = m0c². It can be denoted exactly...
  30. AN630078

    Hydrogen Emission Spectrum and Electron Energy Levels

    1. The 4th line from the left, being the aqua blue line, corresponds to a wavelength of 486 nm, as blue light has a wavelength in the range 450-495 nm. 2. This is where I am having the most difficulty, I have tried to answer the question comprehensively but I am not satisfied with my answer. In...
  31. R

    B Is energy considered to be physical?

    If someone were to talk about "a non-physical energy source" would you consider that a contradiction in terms?
  32. Mayan Fung

    I Energy operator in Quantum Mechanics

    I learned that the energy operator is ##\hat{E} = i\hbar \frac{\partial}{\partial t} ## and the Hamiltonian is ##\hat{H} = \frac{-\hbar^2}{2m}\nabla^2+V(r,t)## If the Hamiltonian represents the total energy of the system. I expect the two should be the same. Did I misunderstand the concept of...
  33. EchoRush

    Help with deriving the formula for kinetic energy (using calculus)

    Hello, I am learning how to use calculus to derive the formula for kinetic energy now, I understandthe majority of the steps in how to do this, however, there is one step where I get totally lost, I will post a picture of the steps and I will circle the part where I get lost. If you see the...
  34. LCSphysicist

    Energy of a configuration of two concentric spherical charged shells

    I found the total work done is: ##\frac{q^2}{8\pi \varepsilon a} + \frac{q^2}{8\pi \varepsilon b} + \epsilon \int E_{1}.E_{2} dv## The third is a little troublesome i think, but i separated into threeregions, inside the "inside" shell, between both shell and outside both. Inside => ##E_{1}.E_{2}...
  35. AN630078

    Potential Energy and raising a satellite from Earth into a Circular Orbit

    a. V=-GM/r V=-6.67*10^-11*6.0 x 10^24/6.4 x 10^6 V grav = -62531250 ~ -62.5M Jkg^-1 b. To find the gravitational potential 200 km above the surface of the Earth; r=6.4 x 10^6 +2*10^5 m=6.6*10^6 V grav=-6.67*10^-11*6.0 x 10^24/6.6*10^6 V grav= -60636363 ~ -60.6 M Jkg^-1 Can I check that it is...
  36. Leo Liu

    Definition of potential energy

    Potential energy is generally a function of position vector ##\vec r## and it is defined as ##\int_i^f \vec F(\vec r)d\vec r=-U(\vec r) \bigg| _{i}^{f}=U(\vec r_i)-U(\vec r_f)##, where the force is conservative. Using the fact that the integral of force is also the definition of work, I obtain...
  37. jjson775

    Ionization Energy: Solving for n and Why I Was Wrong

    I got the right answers but have 2 questions. My first attempt was to use Equation 2 and solve for r then use Equation 3 and solve for n. My reasoning was that the photon needed to overcome the potential energy of the atom to release the electron. This gave me n =3.44. Why was I wrong? Then...
  38. L

    B Does an electron have kinetic energy when attached to a proton?

    does an electron have kinetic energy when attached to a proton? if not, what is it transformed into?
  39. wcjy

    Kinematics, Conservation of energy, momentum

    m1 + m2 = 8 COE 0.5(m1)(u1)^2 + (m1)(g)(30) + 0.5(m2)(u2)^2 + (m2)(g)(30) = 0.5(m1)(v1)^2 + 0.5(m2)(v2)^2 + (m2)(g)(16) Can you check if my eqn is correct? And can you advise what to do after this? I wanted to do COLM but i don't know what is the initial part.
  40. L

    B Basic Question: What are energy levels, of photons, for example?

    I often read of photons manifesting different levels of energy. I know that energy increases as wavelength decreases and frequency increases. Are there other ways particles gain or lose energy? As water boils heat energy is transferred to the water causing water molecules to move faster and to...
  41. Gh778

    B Energy needed to increase a volume

    A recipient (cube) of 1m³ is filled of small spheres, there are for example 1000³ spheres inside the recipient. There are also 1000³ elastics that attract the spheres to the bottom. The elastic are always vertical. One elastic for each sphere. One end of the elastic is fixed on a sphere and the...
  42. wcjy

    Momentum and Conservation of energy

    When A hits B, COLM mV = -mVa + 2mVb V = 2Vb - Va COKE 0.5mv^2 = 0.5mVa^2 + 0.5(2m)Vb^2 V^2 = Va^2 + 2Vb^2 When B hits C COLM 2mVb=4mVc Vc = 0.5Vb COE 0.5(2m)Vb^2 = 0.5kx^2 +0.5(4m)Vc^2 sub Vc = 0.5b mVb^2 = KX^2 After that I am stuck, cause i can't find V in terms of Vb only
  43. WMDhamnekar

    MHB Molecular orbital theory question about energy level diagrams

    Hello, The sigma $(\sigma)$ molecular orbitals are symmetrical around the bond-axis while pi $(\pi)$ molecular orbitals are not symmetrical. For example, the linear combination of 1s orbitals centered on two nuclei produces two molecular orbitals which are symmetrical around the bond-axis. Such...
  44. A

    Conservation of Energy Along an Incline with Friction

    There are two nonconservative forces in this situation, the work done by the person and the work done by friction - they are the only sources of work that change the total mechanical energy of the mass-Earth system. The initial energy (assuming gravitational potential energy is initially 0) is...
  45. A

    I Exploring the Relationship Between Binding Energy and Distance in Nuclei

    I always read that the weight of the protons and neutrons forming a nucleus is less than the weight of them if counted as standalone particles, the difference being the "mass defect" which goes into the binding energy to hold the nucleus together. So I have two questions. 1) The elementary...
  46. Hamiltonian

    Proving that the total mechanical energy is conserved with time

    To prove: total mechanical energy is constant with time where ##E(t)## is the total mechanical energy and ##V(x(t))## is the potential energy of the object-system. $$E(t) = 1/2 mv^2 + V(x(t))$$ taking the the derivative of ##E(t)## with respect time should give 0. in the third step in the...
  47. P

    Energy Conservation between mechanical and electrical

    I am not sure if i can explain my question properly. I am studying the Generators section in the magnetism chapter. As i mentioned the statement "The rate at which work is done is exactly equal to the rate at which energy is dissipated in the resistance". When the term dissipated is used does it...
Back
Top