-z.61.W8.6 int sin^2(x)cos^2(x) dx

  • MHB
  • Thread starter karush
  • Start date
  • Tags
    Dx
In summary, Mark is saying that the integral can be simplified using the sine double angle formula. He then provides the value of $C$ which is unknown.
  • #1
karush
Gold Member
MHB
3,269
5
Evaluate $\displaystyle \int\sin^2 \left({x}\right)\cos^2 \left({x}\right)$

$\displaystyle
\sin^2\left({x}\right)
=\frac{1-\cos\left({2x}\right)}{2}$ and $\displaystyle
\cos^2 \left({x}\right)
=\frac{1+\cos\left({2x}\right)}{2}$

So

$\displaystyle
\int\frac{1-\cos\left({2x}\right)}{2}
\cdot
\frac{1+\cos\left({2x}\right)}{2} \ dx
\implies
\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx$

Not sure how to deal with the $\cos^2 \left({2x}\right) $
 
Physics news on Phys.org
  • #2
Deal with it in the same way you dealt with $\cos^2(x)$ in the original integrand...:)

edit: use a Pythagorean identity first on the new integrand. ;)
 
  • #3
\(\displaystyle \frac{1}{4}-\frac{1}{4}\left(\frac{\text{?}}{\text{?}}\right)\)
What Mark is saying here "deal with it in the same way" is applying the simple trig formula for \(\displaystyle \cos^2{2x}\).
WLOG, \(\displaystyle \cos^2{u}=\frac{1+\cos{2u}}{2}\).
 
  • #4
MarkFL said:
Deal with it in the same way you dealt with $\cos^2(x)$ in the original integrand...:)

edit: use a Pythagorean identity first on the new integrand. ;)

$$\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx
\implies
\frac{1}{4}\int \sin^2 \left({2x} \right) \ dx$$

So would the next step be $u=2x$
 
  • #5
It could be. If so, what's the next step? What does the sine squared equal to?
 
  • #6
karush said:
Evaluate $\displaystyle \int\sin^2 \left({x}\right)\cos^2 \left({x}\right)$

$\displaystyle
\sin^2\left({x}\right)
=\frac{1-\cos\left({2x}\right)}{2}$ and $\displaystyle
\cos^2 \left({x}\right)
=\frac{1+\cos\left({2x}\right)}{2}$

So

$\displaystyle
\int\frac{1-\cos\left({2x}\right)}{2}
\cdot
\frac{1+\cos\left({2x}\right)}{2} \ dx
\implies
\frac{1}{4}\int 1-\cos^2 \left({2x} \right) \ dx$

Not sure how to deal with the $\cos^2 \left({2x}\right) $

The sine double angle formula may be easier to deal with...

$\displaystyle \begin{align*} \int{ \sin^2{(x)}\cos^2{(x)}\,\mathrm{d}x} &= \int{ \left[ \sin{(x)}\cos{(x)} \right] ^2 \,\mathrm{d}x } \\ &= \int{ \left[ \frac{1}{2}\sin{(2\,x)} \right] ^2 \,\mathrm{d}x } \\ &= \int{ \frac{1}{4} \sin^2{(2\,x)} \,\mathrm{d}x} \\ &= \int{ \frac{1}{4} \,\left\{ \frac{1}{2}\,\left[ 1 - \cos{(4\,x)} \right] \right\} \,\mathrm{d}x} \\ &= \frac{1}{8} \int{ \left[ 1 - \cos{(4\,x)} \right] \,\mathrm{d}x} \end{align*}$

Go from here...
 
  • #7
From the integral table..

$$\displaystyle \int\sin^2 \left({ax}\right) dx
=\frac{x}{2}-\frac{\sin\left({2ax}\right)}{4a}$$

So $a=2$ then

$$\displaystyle
\frac{1 }{4}\left[\frac{x}{2 }+\frac{\sin\left({4x}\right)}{8}\right]
=\frac{1}{8}+\frac{\sin\left({4x}\right)}{32}+C$$

😷😷😷😷😷
 
Last edited:

Related to -z.61.W8.6 int sin^2(x)cos^2(x) dx

What is the meaning of the integral -z.61.W8.6 int sin^2(x)cos^2(x) dx?

The integral -z.61.W8.6 int sin^2(x)cos^2(x) dx represents the area under the curve of the function sin^2(x)cos^2(x) from z.61.W8.6 to infinity.

How do I solve the integral -z.61.W8.6 int sin^2(x)cos^2(x) dx?

To solve this integral, you can use the trigonometric identity sin^2(x) = (1-cos(2x))/2 and cos^2(x) = (1+cos(2x))/2 to rewrite the integral as (-z.61.W8.6/4) int (1-cos(2x))(1+cos(2x)) dx. Then, you can use the power rule for integration to solve the integral.

What is the significance of the constant z.61.W8.6 in the integral -z.61.W8.6 int sin^2(x)cos^2(x) dx?

The constant z.61.W8.6 in this integral represents the lower limit of integration. This means that the integral is being evaluated from z.61.W8.6 to infinity.

Why is the integral -z.61.W8.6 int sin^2(x)cos^2(x) dx important in mathematics?

This integral is important in mathematics because it is an example of an improper integral, which is an integral where the limits of integration are not finite. Improper integrals have many applications in calculus, physics, and engineering.

How can I use a computer to evaluate the integral -z.61.W8.6 int sin^2(x)cos^2(x) dx?

You can use a computer to evaluate this integral by using mathematical software, such as Mathematica or Wolfram Alpha. These programs have built-in functions for evaluating integrals and can provide the exact value of the integral.

Similar threads

Replies
3
Views
1K
Replies
8
Views
415
  • Calculus
Replies
6
Views
1K
  • Calculus
Replies
8
Views
417
Replies
4
Views
616
  • Calculus
Replies
2
Views
584
Replies
3
Views
522
Replies
2
Views
1K
Replies
3
Views
1K
Back
Top