How does the ratio test fail and the root test succeed here?

  • #1
psie
122
12
TL;DR Summary
I'm studying Spivak's Calculus, chapter 23, problem 7. There he introduces the root test and he gives an example of a series for which the ratio test fails but the root test works. I struggle with verifying this.
The series that is given is $$\frac12+\frac13+\left(\frac12\right)^2+\left(\frac13\right)^2+\left(\frac12\right)^3+\left(\frac13\right)^3+\ldots.$$ Now, it's easy to see these are two separate geometric series, however, Spivak claims the ratio test fails because the ratio of successive terms does not approach a limit. I have figured out that $$a_{2n-1}=\left(\frac12\right)^{n},\quad a_{2n}=\left(\frac13\right)^{n},\quad n=1,2,\ldots.$$ For the ratio test, we should have that the fraction ##\left|\frac{a_{n}}{a_{n-1}} \right| ## approaches some finite limit or diverges to infinity. In this case, if ##n## is even we have that the fraction is ##\left(\frac23\right)^n\to 0## as ##n\to\infty##. If ##n## is odd, we have ##\left(\frac32\right)^n\frac13\to\infty## as ##n\to\infty##. This behavior confuses me. What can we conclude from this?

The root test given in the exercise is that if ##a_n\geq0## and ##\lim\limits_{n\to\infty}\sqrt[n]{a_n}=r##, then ##\sum_{n=1}^\infty a_n## converges if ##r<1## and diverges if ##r>1##. Apparently this test should work, but I do not see how when the even indexed subsequence and the odd indexed subsequence seem to converge to different limits, namely ##\frac13## and ##\frac12##.
 
Physics news on Phys.org
  • #2
How does Spivak define the root test? The following definition uses the ##\lim \sup##.

https://en.wikipedia.org/wiki/Root_test

That said, it seems more logical to me to use the convergence of both subseries. It can't be hard to prove that if both ##\sum_{n = 1}^{\infty} a_n## and ##\sum_{n = 1}^{\infty} b_n## converge, then ##a_1 + b_1 + a_2 + b_2 + a_3 + b_3 \dots## must also converge.

PS and in this case, it's not hard actually to compute the limit of the series!
 
  • Like
Likes psie
  • #3
The root test is stronger than the ratio test, at least if ##\limsup##-version is used. It is based on this inequality: ##\liminf(a_{n+1}/a_n) \le \liminf a_n^{1/n} \le \limsup a_n^{1/n} \le \limsup(a_{n+1}/a_n)##, if every ## a_n## is a positive real number.
 
  • #4
PeroK said:
How does Spivak define the root test?
Spivak defines the root test first as I defined it above, without the ##\limsup##. Then, however, he adds that we can replace the limit with ##\limsup## and calls it the "delicate root test". He probably means that if we use the root test with ##\limsup## on the series above, then we get that ##\limsup\limits_{n\to\infty}|a_n|^{1/n}=\frac12##, which is less than ##1##, so we have convergence.

PeroK said:
That said, it seems more logical to me to use the convergence of both subseries. It can't be hard to prove that if both ##\sum_{n = 1}^{\infty} a_n## and ##\sum_{n = 1}^{\infty} b_n## converge, then ##a_1 + b_1 + a_2 + b_2 + a_3 + b_3 \dots## must also converge.
I agree it would be easier to use the convergence of both subseries, but I'm trying to understand what Spivak means by the ratio test failing. We have that ##\left|\frac{a_{n}}{a_{n-1}} \right|## converges to ##0## if ##n## is even and ##\infty## if ##n## is odd, as ##n\to\infty##. Can we conclude from this that ##\lim\limits_{n\to\infty}\left|\frac{a_{n}}{a_{n-1}} \right|## does not equal a finite number or infinity?
 
  • #5
psie said:
Spivak defines the root test first as I defined it above, without the ##\limsup##. Then, however, he adds that we can replace the limit with ##\limsup## and calls it the "delicate root test". He probably means that if we use the root test with ##\limsup## on the series above, then we get that ##\limsup\limits_{n\to\infty}|a_n|^{1/n}=\frac12##, which is less than ##1##, so we have convergence.I agree it would be easier to use the convergence of both subseries, but I'm trying to understand what Spivak means by the ratio test failing. We have that ##\left|\frac{a_{n}}{a_{n-1}} \right|## converges to ##0## if ##n## is even and ##\infty## if ##n## is odd, as ##n\to\infty##. Can we conclude from this that ##\lim\limits_{n\to\infty}\left|\frac{a_{n}}{a_{n-1}} \right|## does not equal a finite number or infinity?
The ratio test is inconclusive, as every other term in the sequence of ratios is ##\frac 1 2(\frac 3 2)^n##.
 
  • #6
psie said:
I agree it would be easier to use the convergence of both subseries, but I'm trying to understand what Spivak means by the ratio test failing. We have that ##\left|\frac{a_{n}}{a_{n-1}} \right|## converges to ##0## if ##n## is even and ##\infty## if ##n## is odd, as ##n\to\infty##. Can we conclude from this that ##\lim\limits_{n\to\infty}\left|\frac{a_{n}}{a_{n-1}} \right|## does not equal a finite number or infinity?

The correct conclusion is that this limit does not exist.
 
  • Like
Likes SammyS and psie
  • #7
I analyze whole question and I think here limit will not exist.
 

1. Why does the ratio test fail in this scenario?

The ratio test fails when the limit of the absolute value of the ratio of consecutive terms does not exist or is not less than 1. This can happen when the terms of the series do not follow a clear pattern or when the ratio of consecutive terms does not approach a specific value.

2. How does the root test succeed where the ratio test fails?

The root test is successful when the limit of the nth root of the absolute value of the terms of the series is less than 1. This test can be applied effectively when the terms of the series involve powers or roots, making it easier to analyze the convergence of the series.

3. Can the ratio test fail and the root test succeed simultaneously?

Yes, it is possible for the ratio test to fail while the root test succeeds. This can occur when the terms of the series have a specific structure that makes it difficult for the ratio test to determine convergence, but the root test can still provide valuable information about the convergence of the series.

4. Are there any advantages to using the root test over the ratio test?

One advantage of the root test over the ratio test is that it can be easier to apply in certain situations, especially when dealing with terms that involve powers or roots. Additionally, the root test can sometimes provide a clearer indication of convergence when the ratio test fails to do so.

5. How can I determine when to use the ratio test or the root test?

It is important to consider the structure of the terms in the series when deciding whether to use the ratio test or the root test. If the terms involve powers or roots, the root test may be more appropriate. However, if the terms involve factorials or exponential functions, the ratio test may be a better choice. Ultimately, it may be helpful to try both tests if one is inconclusive.

Similar threads

Replies
3
Views
917
  • Calculus
Replies
19
Views
1K
Replies
15
Views
2K
  • Calculus
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
2
Views
193
Replies
8
Views
1K
  • Calculus and Beyond Homework Help
Replies
2
Views
713
  • Calculus and Beyond Homework Help
Replies
1
Views
265
Replies
4
Views
755
Replies
1
Views
167
Back
Top