Why Do Pendry's Cloaking Equations Differ in My Calculations?

  • Thread starter andresordonez
  • Start date
  • Tags
    article
In summary: So when you consider this, the equations are the same.In summary, the equations given in the article by Pendry for the new coordinates and permittivity transformation are correct. The difference between the equations in the article and the ones obtained by the reader is due to the assumption of \epsilon being equal to 1 in the article, whereas in the reader's calculations, \epsilon is not equal to 1. When this is taken into consideration, the equations are the same.
  • #1
andresordonez
68
0
Hi, I'm reading this article (you may need to register to view it, the registration is free though).

http://www.sciencemag.org/content/312/5781/1780.full

(can I post a link to this article in Dropbox so that people reading this don't have to register without getting an infraction from the moderators??)

and I'm getting this:

[tex]
\epsilon'_{r'} = \epsilon \frac{R_2}{R_2-R_1} (r'-R_1)^2 \sin(\theta')
[/tex]
[tex]
\epsilon'_{\theta'} = \epsilon \frac{R_2}{R_2-R_1} \sin(\theta')
[/tex]
[tex]
\epsilon'_{\phi'} = \epsilon \frac{R_2}{R_2-R_1} \sin(\theta')
[/tex]

instead of equations (7) in Pendry's article:

[tex]
\epsilon'_{r'} = \frac{R_2}{R_2-R_1} \frac{(r'-R_1)^2}{r'}
[/tex]
[tex]
\epsilon'_{\theta'} = \frac{R_2}{R_2-R_1}
[/tex]
[tex]
\epsilon'_{\phi'} = \frac{R_2}{R_2-R_1}
[/tex]

The difference between these equations and the ones I get is not only the missing [tex]r'[/tex] and the extra [tex]sin(\theta')[/tex] but also the extra [tex]\epsilon[/tex]

This is what I'm doing. The new coordinates are given by equations (6):

[tex]
r^{\prime}=R_{1}+r\frac{\left(R_{2}-R_{1}\right)}{R_{2}}
[/tex]
[tex]
\theta^{\prime}=\theta
[/tex]
[tex]
\phi^{\prime}=\phi
[/tex]

The permittivity transforms according to:
[tex]
\epsilon_{r}^{\prime}=\epsilon\frac{Q_{\theta'}Q_{\phi'}}{Q_{r'}}
[/tex]
[tex]
\epsilon_{\theta}^{\prime}=\epsilon\frac{Q_{r'}Q_{\phi'}}{Q_{\theta'}}
[/tex]
[tex]
\epsilon_{\phi}^{\prime}=\epsilon\frac{Q_{r'}Q_{\theta'}}{Q_{\phi'}}
[/tex]

where [tex]Q_{u}[/tex] is given by:
[tex]
Q_u^2 = \left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2
[/tex]

Then:
[tex]
Q_{r^{\prime}}^{2}=\left(\frac{\partial x}{\partial r^{\prime}}\right)^{2}+\left(\frac{\partial y}{\partial r^{\prime}}\right)^{2}+\left(\frac{\partial z}{\partial r^{\prime}}\right)^{2}
[/tex]
[tex]
\frac{\partial x}{\partial r^{\prime}}=\frac{\partial x}{\partial r}\frac{\partial r}{\partial r^{\prime}}+\frac{\partial x}{\partial\theta}\frac{\partial\theta}{\partial r^{\prime}}+\frac{\partial x}{\partial\phi}\frac{\partial\phi}{\partial r^{\prime}}=\frac{\partial x}{\partial r}\frac{\partial r}{\partial r^{\prime}}=\sin\theta\cos\phi\frac{R_{2}}{R_{2}-R_{1}}=\sin\theta^{\prime}\cos\phi^{\prime}\frac{R_{2}}{R_{2}-R_{1}}
[/tex]
[tex]
\frac{\partial y}{\partial r^{\prime}}=\frac{\partial y}{\partial r}\frac{\partial r}{\partial r^{\prime}}+\frac{\partial y}{\partial\theta}\frac{\partial\theta}{\partial r^{\prime}}+\frac{\partial y}{\partial\phi}\frac{\partial\phi}{\partial r^{\prime}}=\frac{\partial y}{\partial r}\frac{\partial r}{\partial r^{\prime}}=\sin\theta\sin\phi\frac{R_{2}}{R_{2}-R_{1}}=\sin\theta^{\prime}\sin\phi^{\prime}\frac{R_{2}}{R_{2}-R_{1}}
[/tex]
[tex]
\frac{\partial z}{\partial r^{\prime}}=\frac{\partial z}{\partial r}\frac{\partial r}{\partial r^{\prime}}+\frac{\partial z}{\partial\theta}\frac{\partial\theta}{\partial r^{\prime}}+\frac{\partial z}{\partial\phi}\frac{\partial\phi}{\partial r^{\prime}}=\frac{\partial z}{\partial r}\frac{\partial r}{\partial r^{\prime}}=\cos\theta\frac{R_{2}}{R_{2}-R_{1}}=\cos\theta^{\prime}\frac{R_{2}}{R_{2}-R_{1}}
[/tex]
[tex]
Q_{r^{\prime}}^{2}=\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}
[/tex]

[tex]
Q_{\theta^{\prime}}^{2}=\left(\frac{\partial x}{\partial\theta^{\prime}}\right)^{2}+\left(\frac{\partial y}{\partial\theta^{\prime}}\right)^{2}+\left(\frac{\partial z}{\partial\theta^{\prime}}\right)^{2}
[/tex]
[tex]
\frac{\partial x}{\partial\theta^{\prime}}=\frac{\partial x}{\partial\theta}=r\cos\theta\cos\phi=\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\cos\theta^{\prime}\cos\phi^{\prime}
[/tex]
[tex]
\frac{\partial y}{\partial\theta^{\prime}}=\frac{\partial y}{\partial\theta}=r\cos\theta\sin\phi=\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\cos\theta^{\prime}\sin\phi^{\prime}
[/tex]
[tex]
\frac{\partial z}{\partial\theta^{\prime}}=\frac{\partial z}{\partial\theta}=-r\sin\theta=-\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}
[/tex]
[tex]
Q_{\theta^{\prime}}^{2}=\left[\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\right]^{2}
[/tex]

[tex]
Q_{\phi^{\prime}}^{2}=\left(\frac{\partial x}{\partial\phi^{\prime}}\right)^{2}+\left(\frac{\partial y}{\partial\phi^{\prime}}\right)^{2}+\left(\frac{\partial z}{\partial\phi^{\prime}}\right)^{2}
[/tex]
[tex]
\frac{\partial x}{\partial\phi^{\prime}}=\frac{\partial x}{\partial\phi}=-r\sin\theta\sin\phi=-\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}\sin\phi^{\prime}
[/tex]
[tex]
\frac{\partial y}{\partial\phi^{\prime}}=\frac{\partial y}{\partial\phi}=r\sin\theta\cos\phi=\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}\cos\phi^{\prime}
[/tex]
[tex]
\frac{\partial z}{\partial\phi^{\prime}}=\frac{\partial z}{\partial\phi}=0
[/tex]
[tex]
Q_{\phi^{\prime}}^{2}=\left[\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\right]^{2}\sin^{2}\theta^{\prime}
[/tex]

Finally:
[tex]
\epsilon_{r^{\prime}}=\epsilon\frac{\left[\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\right]^{2}\sin\theta^{\prime}}{\frac{R_{2}}{R_{2}-R_{1}}}=\epsilon\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)^{2}\sin\theta^{\prime}
[/tex]
[tex]
\epsilon_{\theta^{\prime}}=\epsilon\frac{\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}}{\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)}=\epsilon\frac{R_{2}}{R_{2}-R_{1}}\sin\theta^{\prime}
[/tex]
[tex]
\epsilon_{\phi^{\prime}}=\epsilon\frac{\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}\left(r^{\prime}-R_{1}\right)}{\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}}=\epsilon\frac{R_{2}}{R_{2}-R_{1}}\csc\theta^{\prime}
[/tex]

Any kind of help is more than welcome!
 
Physics news on Phys.org
  • #2
That must have taken some time to type. sorry no actual help from me here.
 
  • #3
@bm0p700f:

not more time than with a pencil, check this out: http://www.lyx.org/
 
  • #4
Well, the extra [tex] \epsilon [/tex] (relative permittivity) is just because in the paper it is assumed to be 1 (vacuum or air)
 

Related to Why Do Pendry's Cloaking Equations Differ in My Calculations?

1. What is the purpose of Pendry's cloaking article equations?

The purpose of Pendry's cloaking article equations is to provide a mathematical framework for understanding and designing cloaking devices, which can manipulate electromagnetic waves to make an object invisible.

2. What are the main equations used in Pendry's cloaking article?

The main equations used in Pendry's cloaking article are the Maxwell's equations, which describe the behavior of electromagnetic fields, and the transformation equations, which relate the fields inside and outside of the cloaking device.

3. How do these equations enable cloaking?

These equations enable cloaking by manipulating the electromagnetic fields around an object in a way that cancels out the scattering effects of the object, making it appear invisible to outside observers.

4. Are these equations proven to work in practice?

While the theory behind Pendry's cloaking article equations has been extensively studied and simulated, the practical implementation of cloaking devices using these equations is still in its early stages and requires further research and development.

5. What are the potential applications of Pendry's cloaking article equations?

The potential applications of Pendry's cloaking article equations include military and defense technologies, as well as potential use in optics, telecommunications, and other fields where controlling electromagnetic fields is important.

Similar threads

  • Advanced Physics Homework Help
Replies
11
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
487
Replies
1
Views
467
  • Special and General Relativity
Replies
14
Views
819
  • Introductory Physics Homework Help
Replies
17
Views
449
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Atomic and Condensed Matter
Replies
2
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
1K
Replies
8
Views
299
  • Atomic and Condensed Matter
Replies
1
Views
1K
Back
Top