Tension in String between two blocks

In summary: I'm sorry for the delay, I really didn't have anything else to do!In summary, the tension in the string is 2.11 N.
  • #1
FaraDazed
347
2

Homework Statement


Block 1, of mass [itex]m_1 =2.6[/itex]kg and block 2 of mass [itex]m_2=1.4[/itex]kg are connected by a massless string. Block 2 then experiences a force [itex]F=18[/itex]N acting in the postivive x direction and at an angle of [itex]\theta = 38°[/itex] . The coefficiant of kinetic friction between the floor and both of the blocks is 0.24.

What is the tension in the string?

Homework Equations


[itex]F_{net}=ma \\
F_f = \mu_k F_N
[/itex]

The Attempt at a Solution


Before I did anything else, as standard, drew a diagram.

Then found the normal force acting on block 2...
[itex]
F_{N_2} =m_2 g + F \sin{\theta} \\
F_{N_2} = (1.4)(9.81) + (18) \sin{38} = 24.8N
[/itex]

Then I tried to find the tension by doing...
[itex]
T=F \cos{\theta} - \mu_k (F_{N_1} + F_{N_2}) \\
T=F \cos{\theta} - \mu_k (m_1 g +24.8) \\
T=(18) \cos{38} - 0.24(2.6(9.81)+24.8) = 2.11 N
[/itex]

I do not think I have done this correctly so would appreciate any feedback/advice, thanks :)
 
Physics news on Phys.org
  • #2
Did the diagram give you reason to add the ##m_2 g## and the ##F \sin{\theta}## in that way ?

And are both friction forces contributing to T with the same sign ?

Perhaps showing the diagram you made can help out here. Otherwise: make a separate diagram for each block.
 
  • #3
I can't post the diagram, at least not until way after the coursework is due, because I have not got a camera phone at the moment (waiting for a replacement from my insurance) and do not have access to a scanner.

With regards to the frictional forces, I had them both acting in the negative x-direction, because both blocks are moving in the positive x-direction.

And with regards to the [itex]m_2 g[/itex] and the [itex] F \sin{\theta} [/itex], I did one diagram and equated the forces and the maths told me it was [itex]m_2 g - F \sin{\theta}[/itex] But then for some reason I thought I made a mistake and scribbled it out and when I started again I had them added together. Was I correct first time around?

EDIT: I am trying to draw a crude version of my diagram using ms-paint and will post it as soon as I can.
 
Last edited:
  • #4
Which way does m2 g work ? And F sin(theta) ? Well then. The block doesn't accelerate up or down, so the net force in the y-direction is zero, which helps you to calculate the normal force. That, in turn helps you to calculate the maximum friction force.

Write out (and post) the components of all forces on m1 and the components of all forces on m2 in your drawings as a check. Make sure you get the signs right !
 
  • #5
BvU said:
Which way does m2 g work ? And F sin(theta) ? Well then. The block doesn't accelerate up or down, so the net force in the y-direction is zero, which helps you to calculate the normal force. That, in turn helps you to calculate the maximum friction force.

Write out (and post) the components of all forces on m1 and the components of all forces on m2 in your drawings as a check. Make sure you get the signs right !

Heres my first diagram which is just a diagram of the setup, plus the friction forces which I added on. (Link http://s28.postimg.org/61l56znt9/diagram.jpg )

I appreciate your help a lot, thanks. But its midnight (at least in the UK) and need to get some sleep! So will have another crack at it tomorrow when I can.
 
  • #6
Are you sure of the location and direction of the force F? I imagined from the problem statement that the force was on the right hand side of m2, and was up and to the right.

There are big problems with your horizontal force balances. You left out the ma's. Also, if the force balance is being applied to the combination of the two masses, then the tension should not be in the equation. Do yourself a favor and write a force balance on each mass individually. Then, if you really want to do the combined force balance, add the individual force balances together.
Chet
 
  • #7
Chestermiller said:
Are you sure of the location and direction of the force F? I imagined from the problem statement that the force was on the right hand side of m2, and was up and to the right.

There are big problems with your horizontal force balances. You left out the ma's. Also, if the force balance is being applied to the combination of the two masses, then the tension should not be in the equation. Do yourself a favor and write a force balance on each mass individually. Then, if you really want to do the combined force balance, add the individual force balances together.
Chet

Yes. The problem came with a diagram and the diagram I posted up is exactly the same, with F in the exact same place (i.e. the force is "pushing" rather than pulling.); the only difference between the two diagrams is that the one in the problem only had F, whereas I added in the weight, normal and frictional forces.

I left of the ma as in my head when attempting it, I thought I could calculate the tension without it, however it was the main reason why I did not think I was correct.

I am off to uni now for the day (and have other coursework) so will have another go when I get back later in the day :)
 
  • #8
Ok now this is what I have done.

First Equated forces for block 1 (the one on the right):
Vertically for block 2:
[itex]
F_{N_2}=m_2 g + F \sin{\theta}
[/itex]

Horizontally for block 2
[itex]
F \cos{\theta} - F_{f_2} - T = m_2 a
[/itex]

Then for block 1 (the one of the left)
Vertically:
[itex]
F_{N_1}=m_1 g
[[/itex]

Horiztonally
[itex]
T-F_{f_1}=m_1 a
[/itex]

Then what I did was rearranged the second equation above (the one for horizontal forces on block 2) for T, and substituted that into the equation for the horizontal forces on the other block, with the aim of calculating the acceleration; so then I could go back and pop a into either one to get the Tension.

[itex]
T=F \cos{\theta} - F_{f_2} - m_2 a
[/itex]

And then subbing it into the other one gives...
[itex]
F \cos{\theta}- F_{f_2} - F_{f_1} - m_2 a=m_1 a \\
F \cos{\theta}- F_{f_2} - F_{f_1} = (m_1+m_2)a \\
a = \frac{F \cos{\theta}- F_{f_2} - F_{f_1}}{m_1+m_2} \\
[/itex]

I won't do any more as its time consuming with all the latex markup, but is the thought process correct, and also is what I have already done correct?

It has to be submitted tomorrow and this problem seems to be driving me nuts! lol

Side Note: I kept with [itex]m_2 g + F \sin{\theta} [/itex] for the normal force of block 2 just from looking at the diagram and the way that F is placed (acting down into the ground), that the vertical component of it would be pushing the block into the ground and therefore making it "heavier"

Thanks! :)
 
Last edited:
  • #9
Yes. This is correct. Now, you also need to substitute the coefficient of friction times the normal forces to get the frictional forces. Once you know the acceleration, you can get the tension T.

Chet
 
  • #10
Chestermiller said:
Yes. This is correct. Now, you also need to substitute the coefficient of friction times the normal forces to get the frictional forces. Once you know the acceleration, you can get the tension T.

Chet

Yup. Thank you so much! :)
 

Related to Tension in String between two blocks

1. What causes tension in a string between two blocks?

Tension in a string between two blocks is caused by the force being applied to the string from both blocks. The string acts as a medium for transferring this force from one block to the other, resulting in tension.

2. How is tension calculated in a string between two blocks?

Tension in a string can be calculated using the formula T = F * cosθ, where T is the tension, F is the force being applied to the string, and θ is the angle between the string and the direction of the force.

3. Does the mass of the blocks affect the tension in the string?

Yes, the mass of the blocks does affect the tension in the string between them. As the mass of the blocks increases, the force being applied to the string also increases, resulting in higher tension in the string.

4. Can the tension in a string between two blocks be greater than the force being applied?

No, the tension in a string between two blocks cannot be greater than the force being applied. The tension in the string will always be equal to or less than the force being applied.

5. How does the distance between the blocks affect the tension in the string?

The distance between the blocks does not directly affect the tension in the string. However, as the distance between the blocks increases, the angle between the string and the direction of the force decreases, resulting in a decrease in tension.

Similar threads

  • Introductory Physics Homework Help
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
5K
  • Introductory Physics Homework Help
Replies
30
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
266
Replies
19
Views
3K
  • Introductory Physics Homework Help
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
737
Replies
9
Views
2K
Back
Top