- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,812
Let $a,\,b$ and $c$ be real numbers such that $\sin a+\sin b+\sin c\ge \dfrac{3}{2}$. Prove that
$\sin \left(a-\dfrac{\pi}{6}\right)+\sin \left(b-\dfrac{\pi}{6}\right)+\sin \left(c-\dfrac{\pi}{6}\right)\ge 0$.
$\sin \left(a-\dfrac{\pi}{6}\right)+\sin \left(b-\dfrac{\pi}{6}\right)+\sin \left(c-\dfrac{\pi}{6}\right)\ge 0$.