[Quantum mechanics] Hydrogen Wave Functions -- I don't get this step, can you help me?

  • #1
jamal_lamaj
3
2
TL;DR Summary
I don't understand how to get this result, can you help me? Thanks!!!
Capture.PNG


I don't get the step from (3-22) to (3-23), can you how this integral was calculated? Thanks!
Below there is a screenshoot of (3-9). Images are taken from "Intermediate Quantum Mechanics, 3rd Edition - Bethe, Jackiw".

Capture1.PNG
 
Last edited:
Physics news on Phys.org
  • #3
PeterDonis said:
What textbook is your excerpt from?
"Intermediate Quantum Mechanics, 3rd Edition - Bethe, Jackiw"
And the same calculation in also in "Quantum Mechanics of One and Two Electron - Bethe, Salpeter", but no steps included.
 
Last edited:
  • #4
I don't have the time at the moment to type it all out (and you should work through that yourself if you want to understand). But some hints:

1. Recognize ##Y_{00}(\Omega_1)=\text{constant}##, so ##Y^2_{00}(\Omega_1)=\text{constant}Y_{00}(\Omega_1)##
2. Substitute 3-9 into the integral and think about the integration over ##\Omega_1##, keeping the orthogonality of the spherical harmonics in mind.
 
  • Like
Likes topsquark
  • #5
Hi! Your hints really helped me: I solved it, now it's clear!
If you wanna check up my calculation, here they are:

$$
r_1>r_2
$$

$$
\begin{aligned}

J(r_1,r_2) &= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 (\frac{1}{r_{12}}-\frac{1}{r_2}) \\

&= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_{12}} - \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_2} \\

&= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_{12}} - \frac{1}{r_2} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \\

&= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_{12}} - \frac{1}{r_2} \int d\Omega_1 \hspace{5pt} Y^2_{00}(\Omega_1) \int d\Omega_2 \hspace{5pt} |Y_{lm}(\Omega_2)|^2 \\

&= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_{12}} - \frac{1}{r_2} \\

&= I(r_1,r_2) - \frac{1}{r_2} \\

\end{aligned}
$$

$$
\begin{aligned}

I(r_1,r_2) &= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_{12}} \\

&= \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \frac{1}{r_1} \sum_{l=0}^{\infty} (\frac{r_2}{r_1})^l \frac{4\pi}{2l+1} \sum_{m=-l}^l Y_{lm}(\Omega_1) Y^*_{lm}(\Omega_2) \\

&= \frac{4\pi}{2\sqrt{\pi}} \frac{1}{r_1} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y_{00}(\Omega_1) |Y_{lm}(\Omega_2)|^2 \sum_{l=0}^{\infty} (\frac{r_2}{r_1})^l \frac{1}{2l+1} \sum_{m=-l}^l Y_{lm}(\Omega_1) Y^*_{lm}(\Omega_2) \\

&= \frac{2\sqrt{\pi}}{r_1} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} |Y_{lm}(\Omega_2)|^2 \sum_{l=0}^{\infty} (\frac{r_2}{r_1})^l \frac{1}{2l+1} \sum_{m=-l}^l Y_{00}(\Omega_1) Y_{lm}(\Omega_1) Y^*_{lm}(\Omega_2) \\

&= \frac{2\sqrt{\pi}}{r_1} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} |Y_{lm}(\Omega_2)|^2 \sum_{l=0}^{\infty} (\frac{r_2}{r_1})^l \frac{1}{2l+1} \sum_{m=-l}^l Y^*_{00}(\Omega_1) Y_{lm}(\Omega_1) Y^*_{lm}(\Omega_2) \\

&= \frac{2\sqrt{\pi}}{r_1} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} |Y_{lm}(\Omega_2)|^2 \sum_{l=0}^{\infty} (\frac{r_2}{r_1})^l \frac{1}{2l+1} \sum_{m=-l}^l Y^2_{00}(\Omega_1) \delta_{0}^{l} \delta_{0}^{m} Y^*_{lm}(\Omega_2) \\

&= \frac{2\sqrt{\pi}}{r_1} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} |Y_{00}(\Omega_2)|^2 (\frac{r_2}{r_1})^0 \frac{1}{2 \cdot 0+1} Y^2_{00}(\Omega_1) Y^*_{00}(\Omega_2) \\

&= \frac{2\sqrt{\pi}}{r_1} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_2) Y^2_{00}(\Omega_1) Y_{00}(\Omega_2) \\

&= \frac{2\sqrt{\pi}}{r_1} \frac{1}{2\sqrt{\pi}} \int\int\ d\Omega_1 d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_2) Y^2_{00}(\Omega_1) \\

&= \frac{1}{r_1} \int d\Omega_1 \hspace{5pt} Y^2_{00}(\Omega_1) \int d\Omega_2 \hspace{5pt} Y^2_{00}(\Omega_2) \\

&= \frac{1}{r_1} \\

\end{aligned}
$$

$$
\begin{aligned}

J(r_1,r_2) &= I(r_1,r_2) - \frac{1}{r_2} \\

J(r_1,r_2) &= \frac{1}{r_1} - \frac{1}{r_2} \hspace{0.5cm} \blacksquare

\end{aligned}
$$

Thanks.

P.s.
I'm quite new to the forum, can you explain me how to mark the post as "Solved"?
Bye!
 
Last edited:
  • Like
Likes vanhees71 and Haborix
  • #6
jamal_lamaj said:
can you explain me how to mark the post as "Solved"?
There isn't a way to do that here. In general PF discussions aren't as simple to categorize as "Solved" vs. "Not Solved" so we don't have any such markings for them. Your post here saying you found the solution is sufficient.
 
  • Like
Likes vanhees71

Similar threads

Replies
2
Views
1K
Replies
11
Views
1K
Replies
8
Views
1K
Replies
9
Views
2K
Replies
80
Views
4K
Replies
10
Views
2K
  • Quantum Physics
Replies
1
Views
704
Replies
16
Views
1K
  • Quantum Physics
Replies
31
Views
3K
Back
Top