Prove angular momentum operator identity

In summary: By using the rule you gave me and applying it to the first part, I got to:$$\begin{align*}\hat{L}^2 &= \hbar \left( e^{-i\phi} \left(-\frac{\partial}{\partial\theta}\right) + ie^{-i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) \hbar \left(e^{+i\phi}\left(\frac{\partial}{\partial\theta}\right) + ie^{+i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) \\&= \hbar^2 e^{-i\phi}\left[-
  • #1
Tom_12
6
0

Homework Statement



Using the operator identity:
[tex]
\hat{L}^2=\hat{L}_-\hat{L}_+ +\hat{L}_z^2 + \hbar\hat{L}_z
[/tex] show explicitly:
[tex]
\hat{L}^2 = -\hbar^2 \left[
\frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2} +
\frac{1}{\sin\theta} \frac{\partial}{\partial\theta}
\left(\sin\theta\frac{\partial}{\partial\theta}\right)
\right]
[/tex](Note: all L are operators, i.e. L(hat))

Homework Equations


[tex]
\hat{L}_\pm = \hbar e^{\pm i\phi}\left(\pm \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \\
\hat{L}_z = -i\hbar \frac{\partial}{\partial\phi}
[/tex]

The Attempt at a Solution



\begin{align*}
\hat{L}^2 &= \hat{L}_-\hat{L}_+ + \hat{L}_z^2 + \hbar \hat{L}_z \\
&= \hbar e^{-i\phi}\left(- \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \times \hbar e^{+i\phi}\left(+ \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) + \left(-i\hbar \frac{\partial}{\partial\phi}\right)^2 + \hbar \left(-i\hbar \frac{\partial}{\partial\phi}\right) \\
&= \hbar^2\left[\left(- \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\left( \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\right] -\hbar^2\frac{\partial^2}{\partial\phi^2} - i\hbar^2\frac{\partial}{\partial\phi} \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\cot\theta\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2\left(\cot^2\theta+1\right) + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2\left(\frac{1}{\sin^2\theta}\right) + i\frac{\partial}{\partial\phi}\right]
\end{align*}

not sure how to procced from here, it's close to the required form but I do not know how to deal with the [itex] i\frac{\partial}{\partial\phi} [/itex] term or I might have made mistakes...

Hope someone can help, thanks
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Hi Tom, welcome to PF!

Tom_12 said:
[itex]
=\hbar e^{-i\phi}(-∂/∂θ+icotθ∂/∂\phi) \times \hbar e^{+i\phi}(+∂/∂θ+icotθ∂/∂\phi) +(-i\hbar ∂/∂\phi)^2 + \hbar -i\hbar ∂/∂\phi
[/itex]
[itex]
=\hbar^2[(-∂/∂θ+icotθ∂/∂\phi)(∂/∂θ+icotθ∂/∂\phi)]-\hbar^2∂^2/∂\phi ^2-i\hbar^2∂/∂\phi
[/itex]
In this step, you seem to have forgotten that you are dealing with operators. For instance, you can't just cancel out ##e^{-i\phi}## and ##e^{+i\phi}## because there is a ##∂/∂\phi## inbetween them.
 
  • #3
DrClaude said:
Hi Tom, welcome to PF!In this step, you seem to have forgotten that you are dealing with operators. For instance, you can't just cancel out ##e^{-i\phi}## and ##e^{+i\phi}## because there is a ##\frac{\partial}{\partial\phi}## in between them.

Ok, I have no idea if what I'm doing is right, but would really appreciate some guidance here:
\begin{align*}
&= \hbar e^{-i\phi} \left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)
\hbar e^{+i\phi} \left(+\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) +
\left(-i\hbar\frac{\partial}{\partial\phi}\right)^2 -
i\hbar \frac{\partial}{\partial\phi} \\
&= \hbar \left(e^{-i\phi}\left(-\frac{\partial}{\partial\theta}\right) + ie^{-i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) \hbar \left(e^{+i\phi}\left(\frac{\partial}{\partial\theta}\right) + ie^{+i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) +\left(-i\hbar \frac{\partial}{\partial\phi}\right)^2 -i\hbar \frac{\partial}{\partial\phi} \\
&= -\hbar^2 \left[e^{-2i\phi} \left(\frac{\partial}{\partial\theta}\right)^2 - e^{-2i\phi}\cot\theta\frac{\partial}{\partial\theta} - \cot\theta\frac{\partial}{\partial\theta} + \cot^2\theta + \left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2 \left[e^{-2i\phi} \left(\frac{\partial}{\partial\theta}\right)^2 + e^{-2i\phi}\csc^2\theta + \csc^2\theta + \cot^2\theta +\left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right]
\end{align*}
I think I'm doing something where as this doesn't seem to be going anyway...
 
Last edited by a moderator:
  • #4
Start by considering only ##\hat{L}_- \hat{L}_+##:
$$
\hat{L}_- \hat{L}_+ = \hbar^2 e^{-i \phi} \left( - \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)
$$
If you distribute ##\hat{L}_-## on ##\hat{L}_+##,
$$
\frac{\hat{L}_- \hat{L}_+}{\hbar^2} = - e^{-i \phi} \frac{\partial}{\partial \theta} e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right) + e^{-i \phi} i \cot \theta \frac{\partial}{\partial \phi} \left[ e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) \right]
$$
Then
$$
- e^{-i \phi} \frac{\partial}{\partial \theta} \left( e^{i \phi} \frac{\partial}{\partial \theta} \right) = - \frac{\partial^2}{\partial \theta^2}
$$
and
$$
- e^{-i \phi} \frac{\partial}{\partial \theta} \left( e^{i \phi} i \cot \theta \frac{\partial}{\partial \phi}\right) = i \csc^2 \theta \frac{\partial}{\partial \phi} - i \cot \theta \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}
$$
and so on.

It is a bit tedious, but just remember the "rule"
$$
\frac{\partial}{\partial x} f(x) g(y) = \frac{df}{dx} g(y) + f(x) g(y) \frac{\partial}{\partial x}
$$
 
  • #5
I see, thank you very much
 

Related to Prove angular momentum operator identity

1. What is the definition of angular momentum operator identity?

The angular momentum operator identity is a mathematical expression that describes the relationship between the orbital angular momentum operator and the total angular momentum operator in quantum mechanics.

2. Why is proving the angular momentum operator identity important?

Proving the angular momentum operator identity is important because it allows us to understand the behavior of angular momentum in quantum systems, which is crucial in many areas of physics such as atomic and molecular physics, nuclear physics, and solid state physics.

3. How is the angular momentum operator identity derived?

The angular momentum operator identity is derived using the commutation relations between the position and momentum operators and the definition of the angular momentum operators in terms of position and momentum.

4. What are the physical implications of the angular momentum operator identity?

The angular momentum operator identity has several physical implications, including the fact that the total angular momentum operator is a conserved quantity in quantum systems, and that the eigenvalues of the total angular momentum operator correspond to the observable angular momentum values in a system.

5. Are there any limitations to the angular momentum operator identity?

The angular momentum operator identity is a fundamental mathematical relationship in quantum mechanics, but it may not hold in certain non-standard or highly complex systems. Additionally, it is important to note that the angular momentum operator identity only applies to systems where rotational symmetry is present.

Similar threads

  • Advanced Physics Homework Help
Replies
10
Views
665
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
29
Views
262
  • Advanced Physics Homework Help
Replies
3
Views
474
  • Advanced Physics Homework Help
Replies
9
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
418
  • Advanced Physics Homework Help
Replies
1
Views
819
  • Advanced Physics Homework Help
Replies
4
Views
975
  • Advanced Physics Homework Help
Replies
10
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
940
Back
Top