Please help on complex fourier expansion.

In summary, the given formula can be proved by grouping the terms with +n and -n together and simplifying the brackets. There was a mistake in the original formula, and the correct answer is e^{ax} = \frac{\sinh \pi a}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+n^2}(a \cos nx - n \sin nx).
  • #1
yungman
5,723
242

Homework Statement


To prove:

[tex]e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+n^2}(a cos(nx) + n sin(nx))[/tex]

For [itex] -\pi < x < \pi \hbox{ and a is real and not equal 0} [/tex]

Homework Equations



Given:

[tex] \int^{\pi}_{\pi} e^{ax} e^{-jnx}dx = \int^{\pi}_{\pi} C_n e^{jnx} e^{-jnx} dx = 2\pi C_n [/tex]

[tex] C_n = \frac{1}{2\pi} \int^{\pi}_{\pi} e^{ax} e^{-jnx}dx [/tex]

[tex] f(x)=e^{ax} = \sum_{n=-\infty}^{\infty} C_n e^{jnx}[/tex]

[tex]e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx}[/tex]

The Attempt at a Solution



[tex]e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}(a+jn)[cos(nx) + jsin(nx)][/tex]

[tex] (-1)^{-n}=(-1)^n \Rightarrow \sum_{n=-\infty}^{\infty}\frac{j(-1)^n n}{a^2+ n^2} = 0 [/tex]

[tex] \Rightarrow e^{ax} = \frac{asinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}[cos(nx) + jsin(nx)][/tex]

I cannot see how to get from this to this:

[tex]e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+n^2}(a cos(nx) + n sin(nx))[/tex]

Please help me.

Thanks

Alan
 
Last edited:
Physics news on Phys.org
  • #2
If you group the +n and -n terms together, you can write the sum as

[tex]\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx} = \frac{1}{a}+\sum_{n=1}^\infty \left[\frac{(-1)^n}{a-jn} e^{jnx} + \frac{(-1)^{-n}}{a-j(-n)} e^{j(-n)x}\right][/tex]

Try simplifying what's inside the square brackets.
 
  • #3
vela said:
If you group the +n and -n terms together, you can write the sum as

[tex]\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx} = \frac{1}{a}+\sum_{n=1}^\infty \left[\frac{(-1)^n}{a-jn} e^{jnx} + \frac{(-1)^{-n}}{a-j(-n)} e^{j(-n)x}\right][/tex]

Try simplifying what's inside the square brackets.

Thanks for your reply. I worked on this and I still going nowhere. THis is what I have:

[tex]\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx} = \frac{1}{a}+\sum_{n=1}^\infty [\frac{(-1)^n}{a-jn} e^{jnx} + \frac{(-1)^{-n}}{a-j(-n)} e^{j(-n)x}] =

\frac{1}{a}+\sum_{n=1}^\infty \frac{(-1)^n}{a^2+n^2} [a(e^{jnx} + e^{-jnx}) + jn(e^{jnx} + e^{-jnx})][/tex]

[tex]= \frac{1}{a}+\sum_{n=1}^\infty \frac{(-1)^n}{a^2+n^2} [2a(cos(nx)) + j2n(sin(nx))][/tex]

Still with this, it is no where close to the answer. The important thing is the answer contain sum from [itex]n=-\infty \hbox{ to } n=\infty[/tex]
 
  • #4
You're close. Remember that sin(nx) has a 2j on the bottom, not just a 2.EDIT: I checked the formula you're trying to prove, and there's a mistake in it. It should be

[tex]e^{ax} = \frac{\sinh \pi a}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+n^2}(a \cos nx - n \sin nx)[/tex]

The sign of the sine term is wrong in the original.
 
Last edited:
  • #5
I went through my derivation again and I found out what I did wrong. This is my new finding:

[tex]\sum_{n=-\infty}^{\infty} (-1)^n n[cos(nx)] = ... (-1)^{-2}(-2)cos(-2x) + (-1)^{-1}(-1)cos(-x) + 0 + (-1)^1(1)cos(x) + (-1)^2(2)cos(2x)... [/tex]

[tex]= ...-2cos(2x) +cos(x) + 0 - cos(x) + 2cos(2x)...= 0[/tex]

[tex]\sum_{n=-\infty}^{\infty} (-1)^n a[sin(nx)] = ... (-1)^{-2}(a)sin(-2x) + (-1)^{-1}(a)sin(-x) + 0 + (-1)^1(a)sin(x) + (-1)^2(a)sin(2x)... [/tex]

[tex]= ...-a[sin(2x)] +a[sin(x)] + 0 - a[sin(x)] + a[sin(2x)]...= 0[/tex]

With that, I go on to substitude into the original equation:

[tex]e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}(a+jn)[cos(nx) + jsin(nx)][/tex]

[tex]= \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}[a(cos(nx)) + jn(cos(nx)) +ja(sin(nx))-n(sin(nx))] [/tex]

[tex] = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}[a(cos(nx)) -n(sin(nx))][/tex]

My original assumption was wrong and now I got the answer. Thanks for your help anyway.

Alan
 
Last edited:

Related to Please help on complex fourier expansion.

What is a complex Fourier expansion?

A complex Fourier expansion is a mathematical representation of a periodic function as an infinite sum of complex exponential functions. It is used to analyze and decompose complex signals or functions into simpler components.

How is a complex Fourier expansion different from a regular Fourier expansion?

A regular Fourier expansion uses only real-valued sine and cosine functions, while a complex Fourier expansion uses complex exponential functions. This allows for a more concise and efficient representation of certain types of signals or functions.

What is the purpose of a complex Fourier expansion?

The purpose of a complex Fourier expansion is to break down a complex signal or function into simpler components, making it easier to analyze and understand. It is commonly used in fields such as signal processing, image processing, and quantum mechanics.

What are the key components of a complex Fourier expansion?

The key components of a complex Fourier expansion are the coefficients, which represent the amplitude and phase of each complex exponential function, and the frequencies, which determine the rate at which each function oscillates.

How is a complex Fourier expansion calculated?

A complex Fourier expansion is calculated by using the Fourier transform, which converts a signal or function from the time or spatial domain to the frequency domain. The coefficients and frequencies can then be determined from the resulting spectrum, and the expansion can be written in the form of an infinite sum.

Similar threads

  • Calculus and Beyond Homework Help
Replies
3
Views
507
  • Calculus and Beyond Homework Help
Replies
1
Views
409
  • Calculus and Beyond Homework Help
Replies
1
Views
305
  • Calculus and Beyond Homework Help
Replies
16
Views
645
  • Calculus and Beyond Homework Help
Replies
1
Views
596
  • Calculus and Beyond Homework Help
Replies
1
Views
320
  • Calculus and Beyond Homework Help
Replies
11
Views
471
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
8
Views
1K
Back
Top