Need Help Understanding Shooting Method

In summary: Thanks again.You are correct, using this method you would solve ODE1 and ODE2 to get y_interior[x0] and y_exterior[x0], respectively. Next, you would find the mismatch between y_interior[x0] and y_exterior[x0] using the derivative dδy/dδκ.
  • #1
tau1777
30
0
I'm trying to solve a set of differential equations that all depend on a parameter, κ. I can use the system of ODEs to reduce the four equations into one second order differential equation, for y[x;κ]. I've seen certain tricks to solving equations such as d^2y/dx^2 = κ y[x].But I can not put my equation in that form. So the real trick is,how do I solve for κ and y[x] with only one equation.

My idea is as follows, I will look at the limit of the differential equation at x =0 (ODE1), and the limit of it at the other boundary x = a, (ODE2).Then I will technically have two differential equations. Then I pick a value for κ, from some physics that I know about the problem, i.e. set κ = constant. After this I solve ODE1 in the domain x= 0 to x0 and I solve ODE2 in the domain x0 to x=a. Finally I check whether or not the function y[x] matches at the point x0. If it doesn't match I try this again until I find the value of κ that makes the two sides match up.

Its the last part that I don't know how to implement? How do I use the mis-match to get me a new value of κ? I've read several sources about this idea, under "shooting method", but I really don't get how I should update the values of κ.

Thanks for reading, and any help is much appreciated.
 
Physics news on Phys.org
  • #2
tau1777 said:
I'm trying to solve a set of differential equations that all depend on a parameter, κ. I can use the system of ODEs to reduce the four equations into one second order differential equation, for y[x;κ]. I've seen certain tricks to solving equations such as d^2y/dx^2 = κ y[x].But I can not put my equation in that form. So the real trick is,how do I solve for κ and y[x] with only one equation.

My idea is as follows, I will look at the limit of the differential equation at x =0 (ODE1), and the limit of it at the other boundary x = a, (ODE2).Then I will technically have two differential equations. Then I pick a value for κ, from some physics that I know about the problem, i.e. set κ = constant. After this I solve ODE1 in the domain x= 0 to x0 and I solve ODE2 in the domain x0 to x=a. Finally I check whether or not the function y[x] matches at the point x0. If it doesn't match I try this again until I find the value of κ that makes the two sides match up.

Its the last part that I don't know how to implement? How do I use the mis-match to get me a new value of κ? I've read several sources about this idea, under "shooting method", but I really don't get how I should update the values of κ.

Thanks for reading, and any help is much appreciated.

In the shooting method, you don't only evaluate the mismatch at one value of k. You also slightly perturb the value of k, and then see how it affects the mismatch. You numerically calculate the derivative of the mismatch wrt k, and use Newton's method to provide a new estimate of k, aimed to reducing the mismatch to zero.
 
  • #3
Thanks very much Chestermiller. I just have one more question and then I think I will get it. So using what you are saying I would do something like this:

1) pick κ1
- Solve ODE1 to get y_interior[x0]
- Solve ODE 2 to get y_exterior[x0]
- Find mismatch : δy1= y_int[x0] - y_ext[x0]

2) pick κ2
- Solve ODE1 to get y_interior_2[x0]
- Solve ODE 2 to get y_exterior_2[x0]
- Find mismatch : δy2= y_int_2[x0] - y_ext_2[x0]

Define, δκ = κ2 - κ2

In building the derivative with respect to κ, I would want δy/ δκ right? But the question that remains is do I used δy1 or δy2?

Thanks again.
 
  • #4
I posted the question in another forum, and I think they cleared up the issue. Basically I have do something like this:

1) pick κ1
- Solve ODE1 to get y_interior[x0]
- Solve ODE 2 to get y_exterior[x0]
define y1= y_int[x0] - y_ext[x0]

2) pick κ2
- Solve ODE1 to get y_interior_2[x0]
- Solve ODE 2 to get y_exterior_2[x0]
define y2= y_int_2[x0] - y_ext_2[x0]

Now define δy = y2 - y1, and δκ = κ2 - κ1, and thus I can build the derivative dδy/dδκ, which I can use to get my next guess.

This the correct method right?
 
  • #5
tau1777 said:
Thanks very much Chestermiller. I just have one more question and then I think I will get it. So using what you are saying I would do something like this:

1) pick κ1
- Solve ODE1 to get y_interior[x0]
- Solve ODE 2 to get y_exterior[x0]
- Find mismatch : δy1= y_int[x0] - y_ext[x0]

2) pick κ2
- Solve ODE1 to get y_interior_2[x0]
- Solve ODE 2 to get y_exterior_2[x0]
- Find mismatch : δy2= y_int_2[x0] - y_ext_2[x0]

Define, δκ = κ2 - κ2

In building the derivative with respect to κ, I would want δy/ δκ right? But the question that remains is do I used δy1 or δy2?

Thanks again.

It shouldn't matter much. Newton's method is iterative, so unless dy/dk is constant, you keep applying the same Newton's equation over and over again until the mismatch adequately converges to zero.
 

Related to Need Help Understanding Shooting Method

1. What is the shooting method?

The shooting method is a numerical technique used to solve boundary value problems in mathematics, physics, and engineering. It involves converting a higher-order differential equation into a system of first-order equations, which can then be solved iteratively.

2. When is the shooting method used?

The shooting method is typically used when analytical solutions to boundary value problems are not available or are too difficult to obtain. It is also useful for problems with complex boundary conditions or when the problem cannot be easily solved using other numerical methods.

3. How does the shooting method work?

The shooting method works by guessing an initial value for one of the boundary conditions and then solving the resulting initial value problem using a numerical integration technique. The initial guess is then adjusted until the solution satisfies the desired boundary conditions within a specified tolerance.

4. What are the advantages of using the shooting method?

The shooting method is relatively easy to implement and can handle a variety of boundary value problems. It also does not require the problem to be well-posed, meaning that the solution exists and is unique. Additionally, the shooting method can be applied to problems with non-linear differential equations.

5. What are the limitations of the shooting method?

The shooting method can be computationally expensive, as it requires solving the initial value problem multiple times until an accurate solution is obtained. It also may not converge if the initial guess is too far from the actual solution. Additionally, the method is only applicable to problems with one or two independent variables.

Similar threads

  • Differential Equations
Replies
1
Views
1K
Replies
7
Views
2K
Replies
4
Views
886
  • Differential Equations
Replies
8
Views
4K
  • Differential Equations
Replies
2
Views
1K
  • Differential Equations
Replies
2
Views
2K
  • Differential Equations
Replies
7
Views
2K
  • Differential Equations
Replies
3
Views
1K
Replies
64
Views
2K
Replies
6
Views
2K
Back
Top