Integration by Parts: Showing $\ln^n(1-x)$

In summary: Now taking the limit as $a\rightarrow 1$ and using the fact that $\text{Li}_{1}(1)=\infty$we obtain $$(1-x) \sum_{k=0}^{n}(-1)^ k {n \choose k}\log^{n-k}(1-x) \Gamma(k+1) \text{Li}_{k+1}(1) $$$$=\sum_{k=0}^{n}(-1)^ k {n \choose k}\log^{n-k}(1-x) (k!)^2$$$$=\sum_{k=0}^{n}(-1)^ k \frac{n!}{(n-k)!} \text
  • #1
polygamma
229
0
Integration by parts

By repeatedly integrating by parts show that for $ n >1 $,

$$ \int \frac{\ln^{n}(1-x)}{x} \ dx = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C$$

where $\text{Li}_{n}(x)$ is the polylogarithm function of order $n$.
 
Last edited:
Mathematics news on Phys.org
  • #2
This problem didn't' generate much interest. Perhaps it was too boring.$ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx $Let $ \displaystyle u = \ln^{n}(1-x)$ and $ \displaystyle dv = \frac{dx}{x}$.$ = \displaystyle - \ln x \ln^{n}(1-x) + n \int \frac{\ln x \ln^{n-1} (1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-1}(1-x)$ and $\displaystyle dv = \frac{\ln x}{1-x} \ dx$.$ \displaystyle = \ln x \ln^{n}(1-x) + \text{Li}_{2}(1-x) \ln^{n-1}(1-x) + n (n-1) \int \frac{\text{Li}_{2}(1-x) \ln^{n-2}(1-x)}{1-x} \ dx $Let $\displaystyle u = \ln^{n-2}(1-x)$ and $\displaystyle dv = \frac{\text{Li}_{2}(1-x)}{1-x} \ dx $.$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle - n(n-1)(n-2) \int \frac{\text{Li}_{3} \ln^{n-3} (1-x)}{1-x} \ dx $$ = \displaystyle \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x) $

$ \displaystyle + n(n-1)(n-2) \text{Li}_{4}(1-x) \ln^{n-3}(1-x) + n(n-1)(n-2)(n-3) \int \frac{\text{Li}_{4}(1-x)\ln^{n-4}(1-x)}{1-x} \ dx $$ \displaystyle = \ldots = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$\displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n} n! \int \frac{\text{Li}_{n}(1-x)}{1-x} \ dx $$ \displaystyle = \ln x \ln^{n}(1-x) + n \text{Li}_{2}(1-x) \ln^{n-1}(1-x) - n(n-1)\text{Li}_{3}(1-x) \ln^{n-2}(1-x)$

$ \displaystyle + \ldots + (-1)^{n} (n-1)! \text{Li}_{n} \ln (1-x) \ dx + (-1)^{n-1} n! \text{Li}_{n+1}(1-x) + C $$\displaystyle = \ln x \ln^{n}(1-x) + \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $But actually you can express it more succinctly since $ \displaystyle \ln x = - \text{Li}_{1}(1-x)$.So $ \displaystyle \int \frac{\ln^{n}(1-x)}{x} \ dx = \sum_{k=0}^{n} (-1)^{k-1} \frac{n!}{(n-k)!} \text{Li}_{k+1}(1-x) \ln^{n-k} (1-x) + C $And it's valid for $n=1$ as well.
 
Last edited:
  • #3
I proved a similar forumla a while back

\(\displaystyle \int^a_0 \frac{\log^n(x)}{1-x}\, dx = \log^n(a) \sum_{k=0}^{n}(-1)^k\frac{ n!}{(n-k)!}\,\frac{\text{Li}_{k+1}(a)}{\log^k(a)} \)

I used the binomial expansion .
 
  • #4
I'd be inclined to skin this particular transcendental cat slightly differently... Firstly, apply the reflection substitution \(\displaystyle x \to 1-x\), to obtain

\(\displaystyle \int \frac{\log^n(1-x)}{x}\,dx=\int \frac{(\log x)^n}{(1-x)}\, dx\)Then expand the denominator as an infinite series\(\displaystyle \frac{1}{1-x}=\sum_{k=0}^{\infty}x^k\)

Insert this into the indefinite integral, and then integrate term-by-term...\(\displaystyle \int \frac{\log^n(1-x)}{x}\,dx=\sum_{k=0}^{\infty} \int x^k(\log x)^n\, dx\)
EDIT: You beat me to it, Zaid... I must confess, I never bother with integrals like these in indefinite form, so like you, I did the parametric case... (Cool)
 
Last edited:
  • #5
Here is how I did it Using a substitution we obtain

$$a\int^{1}_0 \frac{\log^n(ax)}{1-ax}\, dx $$

which can be written as

$$a\int^{1}_0 \frac{\left(\log(a)+\log(x) \right)^n}{1-ax}\, dx $$

Now using that binomial expansion we have

$$a\int^{1}_0 \sum_{k=0}^{n} {n \choose k} \log^{n-k}(a) \log^k(x) \frac{ dx}{1-ax}\, $$

arranging to obtain

$$a \sum_{k=0}^{n}{n \choose k}\log^{n-k}(a)\int^{1}_0 \frac{\log^k(x) }{1-ax}\,dx $$

$$\sum_{k=0}^{n}(-1)^ k {n \choose k}\log^{n-k}(a) \Gamma(k+1) \text{Li}_{k+1}(a) $$
 

Related to Integration by Parts: Showing $\ln^n(1-x)$

What is integration by parts?

Integration by parts is a technique used in calculus to solve integrals that involve the product of two functions. It involves a formula that allows us to break down the integral into two smaller integrals, making it easier to solve.

Why do we use integration by parts?

We use integration by parts when we encounter integrals that cannot be solved using other techniques, such as substitution or the power rule. It allows us to simplify the integral and make it easier to solve.

How do we use integration by parts to show $\ln^n(1-x)$?

To show $\ln^n(1-x)$ using integration by parts, we first choose $u$ and $dv$ such that $udv = \ln^n(1-x)dx$. Then, we use the formula $\int udv = uv - \int vdu$ to break down the integral into two smaller integrals. We continue this process until the integral becomes solvable.

What is the formula for integration by parts?

The formula for integration by parts is $\int udv = uv - \int vdu$. This formula allows us to break down an integral involving the product of two functions into two smaller integrals, making it easier to solve.

Are there any limitations to using integration by parts?

Yes, there are limitations to using integration by parts. It is only applicable to integrals that involve the product of two functions, and it may not always lead to a solvable integral. It also requires careful choice of $u$ and $dv$ in order to be effective.

Similar threads

  • General Math
Replies
7
Views
663
Replies
4
Views
577
Replies
14
Views
1K
  • General Math
Replies
4
Views
1K
Replies
1
Views
565
  • General Math
Replies
3
Views
816
Replies
4
Views
1K
  • General Math
Replies
10
Views
890
  • Calculus and Beyond Homework Help
Replies
14
Views
443
Replies
1
Views
643
Back
Top