Fourier Transform (Triangular Pulse)

In summary, it is possible to find the Fourier transform of the given function by using integration by parts and the trigonometric identity ##\cos(u) = \cos^2(u/2) - \sin^2(u/2) = 1 - 2 \sin^2(u/2)##. The function itself is an even function, which simplifies the calculation. The final expression for the transform involves two integrals, ##I_1 = \int_0^b 1 \cos(\omega t) \, dt## and ##I_2 = \int_0^b t \cos(\omega t) \, dt##, which can be easily evaluated.
  • #1
roam
1,271
12

Homework Statement


What is the Fourier transform of the function graphed below?

triangularpulse.jpg


According to some textbooks the Fourier transform for this function must be:

$$ab \left( \frac{sin(\omega b/2)}{\omega b /2} \right)^2$$

Homework Equations

The Attempt at a Solution



I believe this triangular pulse is given by:

$$x(t)= \left\{\begin{matrix} a- \frac{|t|}{b} \ \ \ if |t|<b \\ 0 \ \ \ if |t|>b \end{matrix}\right.$$

So we need to find the sum of the two integrals:

$$x_1(\omega)= \int^0_{-b} \left(a+ \frac{|t|}{b} \right) e^{-j \omega t} dt$$

$$x_2(\omega)= \int^b_0 \left(a- \frac{|t|}{b} \right) e^{-j \omega t} dt$$

So using integration by parts we evaluate the two integrals:

##u=a + \frac{t}{b}##, ##\frac{du}{dt}=\frac{1}{b}##, ##dv=e^{-j\omega t}##, ##v=\frac{j}{\omega} e^{-j\omega t}##

$$x_1 (\omega)=[\frac{j}{\omega} (a+ \frac{t}{b} e^{-j\omega t}) ]^0_{-b} - \int^0_{-b} \frac{j}{\omega b} e^{-j \omega t}$$

##\therefore x_1(\omega)= \frac{ja}{\omega}-\frac{ja}{\omega}+\frac{j}{\omega}e^{+j\omega b} + \frac{1}{\omega^2b} - \frac{1}{\omega^2 b} e^{+j \omega b}## (1)

Second integral:

$$x_2 (\omega)=[\frac{j}{\omega} (a- \frac{t}{b}) e^{-j \omega t} ]^b_0 - \int^b_0 (-\frac{1}{b}) . \frac{j}{\omega} e^{-j \omega t}$$

##\therefore \ x_2(\omega)= \frac{ja}{\omega} e^{-j\omega b} - \frac{j}{\omega} e^{-j \omega b} - \frac{j}{\omega} a - \frac{1}{\omega^2 b} e^{-j \omega b} + \frac{1}{\omega^2 b}## (2)

Combining (1) and (2):

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{j}{\omega} (e^{+j \omega b} - e^{-j\omega b}) - \frac{1}{\omega^2 b} (e^{+j \omega b} - e^{-j\omega b}) + \frac{ja}{\omega} e^{-j\omega b}$$

Now writing this in terms of sines and cosines using Euler's formula:

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{j}{\omega} (2j sin (\omega b)) - \frac{1}{\omega^2 b} (2 j sin (\omega b)) + \frac{ja}{\omega} (cos (- \omega b)+ j sin (- \omega b))$$

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{ja}{\omega} cos (\omega b) + \frac{a}{\omega} sin (\omega b) - \frac{2}{\omega} sin (\omega b) - \frac{2j}{\omega^2 b} sin (\omega b)$$

I'm stuck here. So how can I get from here to ##ab (\frac{sin(\omega b/2)}{\omega b /2})^2##?

Where did I go wrong? :confused:

Any help would be greatly appreciated.
 
Physics news on Phys.org
  • #2
roam said:

Homework Statement


What is the Fourier transform of the function graphed below?

triangularpulse.jpg


According to some textbooks the Fourier transform for this function must be:

$$ab \left( \frac{sin(\omega b/2)}{\omega b /2} \right)^2$$

Homework Equations

The Attempt at a Solution



I believe this triangular pulse is given by:

$$x(t)= \left\{\begin{matrix} a- \frac{|t|}{b} \ \ \ if |t|<b \\ 0 \ \ \ if |t|>b \end{matrix}\right.$$

So we need to find the sum of the two integrals:

$$x_1(\omega)= \int^0_{-b} \left(a+ \frac{|t|}{b} \right) e^{-j \omega t} dt$$

$$x_2(\omega)= \int^b_0 \left(a- \frac{|t|}{b} \right) e^{-j \omega t} dt$$

So using integration by parts we evaluate the two integrals:

##u=a + \frac{t}{b}##, ##\frac{du}{dt}=\frac{1}{b}##, ##dv=e^{-j\omega t}##, ##v=\frac{j}{\omega} e^{-j\omega t}##

$$x_1 (\omega)=[\frac{j}{\omega} (a+ \frac{t}{b} e^{-j\omega t}) ]^0_{-b} - \int^0_{-b} \frac{j}{\omega b} e^{-j \omega t}$$

##\therefore x_1(\omega)= \frac{ja}{\omega}-\frac{ja}{\omega}+\frac{j}{\omega}e^{+j\omega b} + \frac{1}{\omega^2b} - \frac{1}{\omega^2 b} e^{+j \omega b}## (1)

Second integral:

$$x_2 (\omega)=[\frac{j}{\omega} (a- \frac{t}{b}) e^{-j \omega t} ]^b_0 - \int^b_0 (-\frac{1}{b}) . \frac{j}{\omega} e^{-j \omega t}$$

##\therefore \ x_2(\omega)= \frac{ja}{\omega} e^{-j\omega b} - \frac{j}{\omega} e^{-j \omega b} - \frac{j}{\omega} a - \frac{1}{\omega^2 b} e^{-j \omega b} + \frac{1}{\omega^2 b}## (2)

Combining (1) and (2):

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{j}{\omega} (e^{+j \omega b} - e^{-j\omega b}) - \frac{1}{\omega^2 b} (e^{+j \omega b} - e^{-j\omega b}) + \frac{ja}{\omega} e^{-j\omega b}$$

Now writing this in terms of sines and cosines using Euler's formula:

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{j}{\omega} (2j sin (\omega b)) - \frac{1}{\omega^2 b} (2 j sin (\omega b)) + \frac{ja}{\omega} (cos (- \omega b)+ j sin (- \omega b))$$

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{ja}{\omega} cos (\omega b) + \frac{a}{\omega} sin (\omega b) - \frac{2}{\omega} sin (\omega b) - \frac{2j}{\omega^2 b} sin (\omega b)$$

I'm stuck here. So how can I get from here to ##ab (\frac{sin(\omega b/2)}{\omega b /2})^2##?

Where did I go wrong? :confused:

Any help would be greatly appreciated.
Your formula for x(t) is wrong.
I didn't check the details of the rest of your calculation, but you can simplify it by noticing that the function is an even function.
 
Last edited:
  • Like
Likes roam
  • #3
roam said:

Homework Statement


What is the Fourier transform of the function graphed below?

triangularpulse.jpg


According to some textbooks the Fourier transform for this function must be:

$$ab \left( \frac{sin(\omega b/2)}{\omega b /2} \right)^2$$

Homework Equations

The Attempt at a Solution



I believe this triangular pulse is given by:

$$x(t)= \left\{\begin{matrix} a- \frac{|t|}{b} \ \ \ if |t|<b \\ 0 \ \ \ if |t|>b \end{matrix}\right.$$

*
*
*

$$x(\omega)=\frac{-ja}{\omega}+\frac{2}{\omega^2 b} + \frac{ja}{\omega} cos (\omega b) + \frac{a}{\omega} sin (\omega b) - \frac{2}{\omega} sin (\omega b) - \frac{2j}{\omega^2 b} sin (\omega b)$$

I'm stuck here. So how can I get from here to ##ab (\frac{sin(\omega b/2)}{\omega b /2})^2##?

Where did I go wrong? :confused:

Any help would be greatly appreciated.

As 'Sammy_A' pointed out, your expression for ##x(t)## is incorrect, so everything after that is suspect. Again, if you heed the hint given by 'Sammy_A' you should be able to write the FT ##X(\omega)## of ##x(t)## easily in terms of the two integrals ##I_1 = \int_0^b 1 \cos(\omega t) \, dt## and ##I_2 = \int_0^b t \cos(\omega t) \, dt##.[Note that I use one letter ##x## for one function and a different letter ##X## for the other. Never, never use the same letter for two different functions in the same problem!]

You may also find it useful to apply the trigonometric identity ##\cos(u) = \cos^2(u/2) - \sin^2(u/2) = 1 - 2 \sin^2(u/2)## at some point.
 
  • Like
Likes roam
  • #4
Here is another idea:

$$x(t) =\left\{\begin{matrix}a(\frac{b+t}{b}) \ \ (-b<t<0)\\ a(\frac{b-t}{b}) \ \ (0<t<b) \\0 \ \ else\end{matrix}\right.$$

Is this correct now?

Samy_A said:
I didn't check the details of the rest of your calculation, but you can simplify it by noticing that the function is an even function.

How do I exactly use the property that this is an even function? I am not sure. But I did use the property that cos(-x)=cos(x) and sin(x)=-sin(x) in my calculations...
 
  • #5
roam said:
Here is another idea:

$$x(t) =\left\{\begin{matrix}a(\frac{b+t}{b}) \ \ (-b<t<0)\\ a(\frac{b-t}{b}) \ \ (0<t<b) \\0 \ \ else\end{matrix}\right.$$

Is this correct now?
Yes.
roam said:
How do I exactly use the property that this is an even function? I am not sure. But I did use the property that cos(-x)=cos(x) and sin(x)=-sin(x) in my calculations...
As Ray Vickson explained.

In general, the Fourier transform is given by ##\displaystyle \int_{- \infty}^{+ \infty} f(t) e^{-i \omega t} dt##
Using the Euler formula you can write this as the sum of two integrals, one with ##\cos(\omega t)##, one with ##\sin(\omega t)##.

If ##f## is an even function, the integral with the sine is ##0## (as ##f.\sin## is an odd function and the integration range is symmetric around t=0).
You are left with the integral with the cosine. That function (##f.\cos##), is even, so that instead of integrating from -∞ to +∞, you can take the integral from 0 to ∞ twice.

Conclusion: since your function ##x## is even, ##\displaystyle X(\omega)=2\int_{0}^{b} x(t) \cos(\omega t)dt##.
(Here I used Ray's notation ##X## for the Fourier transform.)
 
Last edited:
  • Like
Likes roam
  • #6
Thank you for the hint. I am still having some difficulty getting to ##\displaystyle X(\omega)=ab(\sin(\omega b/2)/(\omega b /2))^2##. Here's what I did:

$$\displaystyle X(\omega)=2\int_0^{b} a \left( \frac{b-t}{b} \right) \cos(\omega t)dt =2a \int^b_0 \cos (\omega t) - \frac{t}{b} \cos (\omega t) dt$$

Using integration by parts for the second half:

$$=2a [\frac{t}{\omega b} \sin (\omega t) ]^b_0 - \frac{1}{b \omega} \int^b_0 \sin (\omega t) dt = \frac{1}{\omega} \sin (b \omega) + \frac{1}{b \omega^2} [\cos (\omega t)]^b_0$$

$$\therefore \displaystyle X(\omega)= 2a \left( \frac{1}{\omega} \sin (b \omega) + \frac{1}{b \omega^2} \cos (\omega b) - \frac{1}{b \omega^2} \right)$$

I used Ray's trig identity to further simplify this:

$$\displaystyle X(\omega)= \frac{2a}{\omega} \sin(b \omega) + \frac{2a}{b \omega^2} (1- 2 \sin^2(\frac{\omega b}{2}))- \frac{2a}{b \omega^2} + \frac{2a}{\omega} \sin(b \omega)$$

$$= -2 \sin^2(\frac{\omega b}{2})+ \frac{2a}{\omega} \sin(b \omega)$$

Did I make a mistake somewhere, or do I need to use some other identities to get to that expression for ##\displaystyle X(\omega)##?
 
  • #7
roam said:
Thank you for the hint. I am still having some difficulty getting to ##\displaystyle X(\omega)=ab(\sin(\omega b/2)/(\omega b /2))^2##. Here's what I did:

$$\displaystyle X(\omega)=2\int_0^{b} a \left( \frac{b-t}{b} \right) \cos(\omega t)dt =2a \int^b_0 \cos (\omega t) - \frac{t}{b} \cos (\omega t) dt$$

Using integration by parts for the second half:

$$=2a [\frac{t}{\omega b} \sin (\omega t) ]^b_0 - \frac{1}{b \omega} \int^b_0 \sin (\omega t) dt = \frac{1}{\omega} \sin (b \omega) + \frac{1}{b \omega^2} [\cos (\omega t)]^b_0$$

$$\therefore \displaystyle X(\omega)= 2a \left( \frac{1}{\omega} \sin (b \omega) + \frac{1}{b \omega^2} \cos (\omega b) - \frac{1}{b \omega^2} \right)$$

I used Ray's trig identity to further simplify this:

$$\displaystyle X(\omega)= \frac{2a}{\omega} \sin(b \omega) + \frac{2a}{b \omega^2} (1- 2 \sin^2(\frac{\omega b}{2}))- \frac{2a}{b \omega^2} + \frac{2a}{\omega} \sin(b \omega)$$

$$= -2 \sin^2(\frac{\omega b}{2})+ \frac{2a}{\omega} \sin(b \omega)$$

Did I make a mistake somewhere, or do I need to use some other identities to get to that expression for ##\displaystyle X(\omega)##?
You seem to have lost the first integral:
##\displaystyle 2a \int^b_0 \cos (\omega t) dt##

There is also something wrong with the sign (and the ##a##).
 
Last edited:
  • #8
Samy_A said:
You seem to have lost the first integral:
##\displaystyle 2a \int^b_0 \cos (\omega t) dt##

There is also something wrong with the sign (and the ##a##).

Sorry, that was a typo. I didn't miss the first integral, in fact I evaluated both integrals separately:

$$X(\omega) = 2a \left( \underbrace{ \int^b_0 \cos(\omega t) dt}_{{\sin(\omega b)}} + \underbrace{\int^b_0 \frac{t}{b} \cos(\omega t) dt}_{{\frac{1}{\omega} \sin(\omega b) + \frac{1}{\omega^2 b} \cos(\omega b) - \frac{1}{\omega^2 b}}} \right)$$

$$\therefore \ X(\omega) =2a \left( \sin(\omega b) + \frac{1}{\omega} \sin(\omega b) + \frac{1}{\omega^2 b} \cos(\omega b) - \frac{1}{\omega^2 b} \right)$$

What is wrong with the sign? :confused:

Using Ray's trig identity the above becomes:

$$X(\omega) =2a \left( \sin(\omega b) + \frac{1}{\omega} \sin(\omega b) - \frac{2}{\omega^2 b} \sin^2(\frac{\omega b}{2}) \right)$$

So, how do I get from here to ##ab \left( \frac{\sin(\omega b/2)}{\omega b/2} \right)##?
 
  • #9
roam said:
Sorry, that was a typo. I didn't miss the first integral, in fact I evaluated both integrals separately:

$$X(\omega) = 2a \left( \underbrace{ \int^b_0 \cos(\omega t) dt}_{{\sin(\omega b)}} + \underbrace{\int^b_0 \frac{t}{b} \cos(\omega t) dt}_{{\frac{1}{\omega} \sin(\omega b) + \frac{1}{\omega^2 b} \cos(\omega b) - \frac{1}{\omega^2 b}}} \right)$$

$$\therefore \ X(\omega) =2a \left( \sin(\omega b) + \frac{1}{\omega} \sin(\omega b) + \frac{1}{\omega^2 b} \cos(\omega b) - \frac{1}{\omega^2 b} \right)$$

What is wrong with the sign?
A number of small errors, adding up to a wrong result.
1) The second integral with the ##t\cos(\omega t)## misses a minus sign (look at the formula for ##x(t)##).
2) In the result of the first integral, you miss an ##\omega## in the denominator.

Once you have fixed the errors, you will see that Ray's identity leads right to the desired result.
 
  • Like
Likes roam
  • #10
Thank you so much, I finally got it. I really thank you for your time.
 

Related to Fourier Transform (Triangular Pulse)

1. What is a Fourier Transform?

The Fourier Transform is a mathematical tool used to decompose a signal into its constituent frequencies. It is commonly used in signal processing and image analysis.

2. How does the Fourier Transform work?

The Fourier Transform takes a time-domain signal and transforms it into the frequency domain by breaking it down into individual sinusoidal components. This allows for analysis of the frequency content of a signal.

3. What is a triangular pulse?

A triangular pulse is a type of signal that has a triangular shape and is often used in signal processing and communications. It is characterized by its zero value outside of a specific interval and a constant value within that interval.

4. How is a Fourier Transform applied to a triangular pulse?

The Fourier Transform of a triangular pulse is a sinc function, which is a sinusoidal function with a central peak and oscillations on either side. The amplitude and width of the sinc function depend on the amplitude and width of the triangular pulse.

5. What are the applications of the Fourier Transform for triangular pulses?

The Fourier Transform of a triangular pulse can be used to analyze and filter signals in communication and signal processing systems. It is also used in image analysis and pattern recognition. Additionally, the Fourier Transform is used in solving differential equations and in quantum mechanics.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
822
  • Calculus and Beyond Homework Help
Replies
1
Views
844
  • Calculus and Beyond Homework Help
Replies
1
Views
777
  • Calculus and Beyond Homework Help
Replies
3
Views
2K
  • Calculus and Beyond Homework Help
Replies
13
Views
1K
  • Calculus and Beyond Homework Help
Replies
17
Views
4K
  • Engineering and Comp Sci Homework Help
Replies
3
Views
169
  • Calculus and Beyond Homework Help
Replies
3
Views
814
Replies
2
Views
1K
Back
Top