- Thread starter
- #1

- Apr 14, 2013

- 4,983

Hello!

I am implementing the finite difference method in a program in C and I got stuck at the rate of convergence.. The formula is [tex] \frac{log(\frac{e_{1}}{e_{2}})}{log(\frac{J_{2}}{J_{1}})} [/tex], right? where [tex] e_{i}=max|y_{j}^{J_{i}}-y(x_{j}^{J_{i}})| [/tex], [tex] 0<=j<=J_{i} [/tex]. How can I find the [tex] J_{1} [/tex] and [tex] J_{2} [/tex]?

I am implementing the finite difference method in a program in C and I got stuck at the rate of convergence.. The formula is [tex] \frac{log(\frac{e_{1}}{e_{2}})}{log(\frac{J_{2}}{J_{1}})} [/tex], right? where [tex] e_{i}=max|y_{j}^{J_{i}}-y(x_{j}^{J_{i}})| [/tex], [tex] 0<=j<=J_{i} [/tex]. How can I find the [tex] J_{1} [/tex] and [tex] J_{2} [/tex]?

Last edited: