Finding area and volume of bounded region via integration

In summary: Good job!3. The area is $$ \int_0^2 (5-x)-(x-3)dx$$4. The volume is $$ \pi\int_0^2 ((5-x)^2-(x-3)^2)dx$$5. The volume is $$ \pi\int_0^2 (25-10x+x^2-(x^2-6x+9))dx$$6. The volume is $$ \pi\int_{-1}^1 (5-x)^2-(x-3)^2)dy$$7. The volume is $$ \pi\int_{-1}^1 (25-10x+x^2-(x^2
  • #1
Sociomath
9
0
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##


4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##
 
Physics news on Phys.org
  • #2
Sociomath said:
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##

I would suggest you start over and begin by drawing a picture of the region. You are going to need two integrals using either a dx or dy variable. Also, what bounds the region on the left?
 
  • #3
Sociomath said:
Hi,

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

You were correct in identifying x=4 as an intersection point, and y = 1 there; but the other two intersection points must occur where y = 3, so x is certainly NOT zero or 3 ! So there is no reason to integrate from 0 to 3 with respect to x.
 
  • Like
Likes Sociomath
  • #4
Thanks LCKurtz and az_lender!

1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
::
::

2. ##\displaystyle \int_1^3 ((y+3-(5-y))dy\,=\,\int_1^3 (2y-2))dy##
::
::

3. Using (1.) from above:
##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
##=\,\dfrac{x^2}{2}\,+\,C##
##\displaystyle\lim_{x\to 2^{+}} \left(\dfrac{x^2}{2}\right)\,=\,2##
##\displaystyle\lim_{x\to 4^{-}} \left(\dfrac{x^2}{2}\right)\,=\,8##

##\text{From the above}\,=\,8-2\,=\,6##
::
::

4. ##\displaystyle \int_2^4 \pi ((2)^2-((3-(5-x)))^2 dx\,+\,\int_4^6 \pi ((2)^2\,-\,(3-(x-3)))^2 dx##
::
::

5. From (4.) above:
##\dfrac{16\left(1-3\pi\right)\pi}{3}##
::
::

6. ##\displaystyle \int_1^3 \pi \left(6-\left(5-y\right)\right)^2\,-\,\left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\left(6-\left(5-y\right)\right)^2\,-\,\displaystyle \int \left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\,=\,4\left(y\,-\,2\right)y\,+\,\dfrac{28}{3}\,+\,C##
::
::

7. From (6.) above:
##\displaystyle\lim_{y\to 1^{+}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{16\pi}{3}##
##\displaystyle\lim_{y\to 3^{-}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{64\pi}{3}##

##=\,\dfrac{64\pi}{3}\,-\,\dfrac{16\pi}{3}\,=\,16\pi##
 
Last edited:
  • #5
Sociomath said:
1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##

2. $$ \int_1^3 (y+3)-(5-y)dy$$

Those look correct for the triangular area.
 

Related to Finding area and volume of bounded region via integration

1. How do you find the area and volume of a bounded region using integration?

To find the area of a bounded region, you can use the formula A = ∫f(x)dx, where f(x) is the function that represents the boundary of the region. To find the volume of a bounded region, you can use the formula V = ∫A(x)dx, where A(x) is the cross-sectional area at each point along the boundary.

2. What is the difference between finding area and volume using integration?

The main difference is that when finding area, we are integrating a function that represents the boundary of the region, while when finding volume, we are integrating the cross-sectional area at each point along the boundary. This means that the cross-sectional area must be a function of x for volume, but it can be a constant for area.

3. What is the importance of finding the area and volume of a bounded region using integration?

Finding the area and volume of a bounded region is important in many fields, including mathematics, physics, engineering, and architecture. It allows us to accurately calculate and analyze the size and shape of objects and structures, which can be crucial in designing and constructing them.

4. Are there any alternative methods for finding area and volume of a bounded region?

Yes, there are alternative methods such as using geometric formulas or graphing calculators. However, integration is often the most accurate and efficient method for finding the area and volume of a bounded region, especially for irregular or complex shapes.

5. Can integration be used to find the area and volume of any bounded region?

Yes, integration can be used to find the area and volume of any bounded region, as long as the boundary of the region can be represented by a function or a set of functions. However, for some shapes, the integration process may be more complicated and require advanced techniques.

Similar threads

  • Calculus and Beyond Homework Help
Replies
12
Views
1K
  • Calculus and Beyond Homework Help
Replies
34
Views
2K
  • Calculus and Beyond Homework Help
Replies
10
Views
525
  • Calculus and Beyond Homework Help
Replies
27
Views
2K
  • Calculus and Beyond Homework Help
Replies
6
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
518
  • Calculus and Beyond Homework Help
Replies
2
Views
484
  • Calculus and Beyond Homework Help
Replies
2
Views
246
  • Calculus and Beyond Homework Help
Replies
3
Views
377
  • Calculus and Beyond Homework Help
Replies
3
Views
380
Back
Top