- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,812
Let a sequence be defined as follows:
$b_1=3$, $b_2=3$, and for $n \ge 2$, $b_{n+1}b_{n-1}=b_n^2+2007$.
Find the largest integer less than or equal to $\dfrac{b_{2007}^2+b_{2006}^2}{b_{2007}b_{2006}}$.
$b_1=3$, $b_2=3$, and for $n \ge 2$, $b_{n+1}b_{n-1}=b_n^2+2007$.
Find the largest integer less than or equal to $\dfrac{b_{2007}^2+b_{2006}^2}{b_{2007}b_{2006}}$.