- Thread starter
- #1
find the equation of the tangent line.
\(\displaystyle y = e^{3x + cos x}\) @ x = 0
\(\displaystyle
y1 = e^{3(0) + cos(0)} = e^1 = e\)
\(\displaystyle y1 = e\)
\(\displaystyle y = e^{3x+cos x}\)
\(\displaystyle y' = e^{3x + cos x} * (3 - sinx)\)
\(\displaystyle m = 3e\)
\(\displaystyle
y - e = 3e(x - 0) \)
\(\displaystyle y = e^{3x + cos x}\) @ x = 0
\(\displaystyle
y1 = e^{3(0) + cos(0)} = e^1 = e\)
\(\displaystyle y1 = e\)
\(\displaystyle y = e^{3x+cos x}\)
\(\displaystyle y' = e^{3x + cos x} * (3 - sinx)\)
\(\displaystyle m = 3e\)
\(\displaystyle
y - e = 3e(x - 0) \)