Equations of motion and Hamiltonian density of a massive vector field

In summary: If you're looking to prove that ##m^2 C \cdot C = 0## you're gonna have to back a few steps up. It's not really immediately clear that that's what you're trying to show.Instead, try contracting the EOM with the vector field: $$m^2 C^\mu + \partial_\nu F^{\mu \nu} = 0$$and now take the divergence of this equation. What do you get?##m^{2}C^{\mu}+\partial_{\nu}F^{\mu\nu}=0####\implies m^{2}C_{\mu}C^{\mu}+\partial_{\mu}\partial_{\
  • #1
spaghetti3451
1,344
33

Homework Statement



The Lagrangian density for a massive vector field ##C_{\mu}## is given by ##\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^{2}C_{\mu}C^{\mu}## where ##F_{\mu\nu}=\partial_{\mu}C_{\nu}-\partial_{\nu}C_{\mu}##.

Derive the equations of motion and show that when ##m \neq 0## they imply ##\partial_{\mu}C^{\mu}=0##.

Further show that ##C_{0}## can be eliminated completely in terms of the other fields by ##\partial_{i}\partial^{i}C_{0}+m^{2}C_{0}=\partial^{i}\dot{C}_{i}##.

Construct the canonical momenta ##\Pi_{i}## conjugate to ##C_{i}, i=1,2,3## and show that the canonical momentum conjugate to ##C_{0}## is vanishing.

Construct the Hamiltonian density ##\mathcal{H}## in terms of ##C_{0},C_{i}## and ##\Pi_{i}##.

(Note: Do not be concerned that the canonical momentum for ##C_0## is vanishing. ##C_0## is non-dynamical - it is determined entirely in terms of the other fields using ##\partial_{i}\partial^{i}C_{0}+m^{2}C_{0}=\partial^{i}\dot{C}_{i}##.)

Homework Equations



The Attempt at a Solution



Given the Lagrangian density ##\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^{2}C_{\mu}C^{\mu}##, where ##F_{\mu\nu}=\partial_{\mu}C_{\nu}-\partial_{\nu}C_{\mu}## and ##C_{\mu}## is a massive vector field,

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}C_{\sigma})}=\frac{\partial}{\partial (\partial_{\rho}C_{\sigma})}\Big(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\Big)##

##\implies \frac{\partial \mathcal{L}}{\partial (\partial_{\rho}C_{\sigma})}=-\frac{1}{4}\frac{\partial}{\partial (\partial_{\rho}C_{\sigma})}[(\partial_{\mu}C_{\nu}-\partial_{\nu}C_{\mu})(\partial^{\mu}C^{\nu}-\partial^{\nu}C^{\mu})]##

##\implies \frac{\partial \mathcal{L}}{\partial (\partial_{\rho}C_{\sigma})}=-\frac{1}{4}[({\eta^{\rho}}_{\mu}{\eta^{\sigma}}_{\nu}-{\eta^{\rho}}_{\nu}{\eta^{\sigma}}_{\mu})(\partial^{\mu}C^{\nu}-\partial^{\nu}C^{\mu})+(\partial_{\mu}C_{\nu}-\partial_{\nu}C_{\mu})(\eta^{\rho\mu}\eta^{\sigma\nu}-\eta^{\rho\nu}\eta^{\sigma\mu})]##

##\implies \frac{\partial \mathcal{L}}{\partial (\partial_{\rho}C_{\sigma})}=-\frac{1}{4}[\partial^{\rho}C^{\sigma}-\partial^{\sigma}C^{\rho}-\partial^{\sigma}C^{\rho}+\partial^{\rho}C^{\sigma}+\partial^{\rho}C^{\sigma}-\partial^{\sigma}C^{\rho}-\partial^{\sigma}C^{\rho}+\partial^{\rho}C^{\sigma}]##

##=-(\partial^{\rho}C^{\sigma}-\partial^{\sigma}C^{\rho})##

##=-F^{\rho\sigma}##

and

##\frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{\partial}{\partial C_{\rho}}(\frac{1}{2}m^{2}C_{\mu}C^{\mu})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{\partial}{\partial C_{\rho}}(\frac{1}{2}m^{2}\eta^{\mu\nu}C_{\mu}C_{\nu})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{1}{2}m^{2}\eta^{\mu\nu}\frac{\partial}{\partial C_{\rho}}(C_{\mu}C_{\nu})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{1}{2}m^{2}\eta^{\mu\nu}({\eta^{\rho}}_{\mu}C_{\nu}+{C_{\mu}\eta^{\rho}}_{\nu})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{1}{2}m^{2}({\eta^{\rho}}_{\mu}\eta^{\mu\nu}C_{\nu}+{\eta^{\nu\mu}C_{\mu}\eta^{\rho}}_{\nu})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{1}{2}m^{2}({\eta^{\rho}}_{\mu}C^{\mu}+{\eta^{\rho}}_{\nu}C^{\nu})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = \frac{1}{2}m^{2}(C^{\rho}+C^{\rho})##

##\implies \frac{\partial \mathcal{L}}{\partial C_{\rho}} = m^{2}C^{\rho}##

so that

##\frac{\partial \mathcal{L}}{\partial C_{\nu}}-\partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}C_{\nu})}\Big)=0 \implies m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0##.

So, the equations of motion are ##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0##.

Am I correct so far?
 
Physics news on Phys.org
  • #2
Yes, it's all fine.
 
  • #3
Thanks!

Next, I need to show that, when ##m\neq 0##, the equations of motion ##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0## imply ##\partial_{\mu}C^{\mu}=0##:

##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0##

##\implies m^{2}C^{\nu}+\partial_{\mu}(\partial^{\mu}C^{\nu}-\partial^{\nu}C^{\mu})=0##

##\implies m^{2}C^{\nu}+\partial_{\mu}\partial^{\mu}C^{\nu}-\partial_{\mu}\partial^{\nu}C^{\mu}=0##

##\implies m^{2}C^{\nu}+\partial_{\mu}\partial^{\mu}C^{\nu}-\partial^{\nu}\partial_{\mu}C^{\mu}=0##

##\implies (m^{2}+\partial_{\mu}\partial^{\mu})C^{\nu}-\partial^{\nu}(\partial_{\mu}C^{\mu})=0##

So, for ##\partial_{\mu}C^{\mu}=0## to hold when ##m\neq 0##, we must have ##(m^{2}+\partial_{\mu}\partial^{\mu})C^{\nu}=0##.

But why is ##(m^{2}+\partial_{\mu}\partial^{\mu})C^{\nu}=0## when ##m \neq 0##? Surely ##C_{\mu}## is not the Klein-Gordon field, but rather a massive vector field!?
 
  • #4
failexam said:
Thanks!

Next, I need to show that, when ##m\neq 0##, the equations of motion ##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0## imply ##\partial_{\mu}C^{\mu}=0##:

##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0##

##\implies m^{2}C^{\nu}+\partial_{\mu}(\partial^{\mu}C^{\nu}-\partial^{\nu}C^{\mu})=0##

##\implies m^{2}C^{\nu}+\partial_{\mu}\partial^{\mu}C^{\nu}-\partial_{\mu}\partial^{\nu}C^{\mu}=0##

##\implies m^{2}C^{\nu}+\partial_{\mu}\partial^{\mu}C^{\nu}-\partial^{\nu}\partial_{\mu}C^{\mu}=0##

##\implies (m^{2}+\partial_{\mu}\partial^{\mu})C^{\nu}-\partial^{\nu}(\partial_{\mu}C^{\mu})=0##

So, for ##\partial_{\mu}C^{\mu}=0## to hold when ##m\neq 0##, we must have ##(m^{2}+\partial_{\mu}\partial^{\mu})C^{\nu}=0##.
That's not the case - instead of multiplying it all out, contract the equation of motion with ##\partial_{\nu}## so that you get $$m^2 \partial_{\nu} C^{\nu} + \partial_{\nu} \partial_{\mu} F^{\mu \nu} = 0$$ Using properties of ##F^{\mu \nu}## deduce this second term is zero.
 
  • #5
CAF123 said:
That's not the case - instead of multiplying it all out, contract the equation of motion with ##\partial_{\nu}## so that you get $$m^2 \partial_{\nu} C^{\nu} + \partial_{\nu} \partial_{\mu} F^{\mu \nu} = 0$$ Using properties of ##F^{\mu \nu}## deduce this second term is zero.

##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0##

##\implies m^{2}C_{\nu}C^{\nu}+\partial_{\nu}\partial_{\mu}F^{\mu\nu}=0##

##\implies m^{2}C_{\nu}C^{\nu}+\partial_{\mu}\partial_{\nu}F^{\nu\mu}=0##, where we have relabeled indices ##\mu## and ##\nu## in the second term

##\implies m^{2}C_{\nu}C^{\nu}-\partial_{\nu}\partial_{\mu}F^{\mu\nu}=0##, where we have used the commutativity ##\partial_{\mu}\partial_{\nu}=\partial_{\nu}\partial_{\mu}## of partial derivatives and the antisymmetry ##F^{\mu\nu}=-F^{\nu\mu}## of the electromagnetic field strength tensor

So, we have both ##m^{2}C_{\nu}C^{\nu}+\partial_{\nu}\partial_{\mu}F^{\mu\nu}=0## and ##m^{2}C_{\nu}C^{\nu}-\partial_{\nu}\partial_{\mu}F^{\mu\nu}=0##.

Adding the equations gives us ##2m^{2}C_{\nu}C^{\nu}=0## so that ##C_{\mu}C^{\mu}=0## when ##m\neq 0##.

Am I correct?
 
  • #6
Yup, the argument is correct but the term proportional to m^2 should be ##\partial_{\nu} C^{\nu}## not ##C_{\nu}C^{\nu}##. The argument is completely general - whenever you have a symmetric index pair (here ##\partial_{\mu} \partial_{\nu}##) contracting with an antisymmetric one (here ##F^{\mu \nu}##) their contraction always vanishes.
 
  • #7
Thanks!

Now for the next part of the question.

Further show that ##C_0## can be eliminated completely in terms of the other fields by ##\partial_{i}\partial^{i}C_{0}+m^{2}C_{0}=\partial^{i}C_{i}.##

Starting with the equation of motion ##m^{2}C^{\nu}+\partial_{\mu}F^{\mu\nu}=0## and setting ##\nu=0##, we have

##m^{2}C^{0}+\partial_{\mu}F^{\mu 0}=0##

##\implies m^{2}C^{0}+\partial_{\mu}(\partial^{\mu}C^{0}-\partial^{0}C^{\mu})=0##

##\implies m^{2}C^{0}+\partial_{\mu}\partial^{\mu}C^{0}-\partial_{\mu}\partial^{0}C^{\mu}=0##

##\implies m^{2}C^{0}+\partial_{0}\partial^{0}C^{0}+\partial_{i}\partial^{i}C^{0}-\partial_{0}\partial^{0}C^{0}-\partial_{i}\partial^{0}C^{i}=0##

##\implies m^{2}C^{0}+\partial_{i}\partial^{i}C^{0}-\partial_{i}\partial^{0}C^{i}=0##

##\implies m^{2}C^{0}+\partial_{i}\partial^{i}C^{0}-\partial_{i}\dot{C}^{i}=0##

##\implies \partial_{i}\partial^{i}C^{0}+m^{2}C^{0}=\partial_{i}{\dot{C}}^{i}##

##\implies \partial_{i}\partial^{i}C_{0}+m^{2}C_{0}=\partial_{i}\dot{C}_{i}##.

Are my steps correct?
 
  • #8
Correct up to the last line - assuming your metric is (1,-1,-1,-1), for the spatial components part of the four vectors ##X^{\mu}## you have ##X_i = -X^i##.
 
  • #9
CAF123 said:
Correct up to the last line - assuming your metric is (1,-1,-1,-1), for the spatial components part of the four vectors ##X^{\mu}## you have ##X_i = -X^i##.

Thanks! In that case, I have

##\partial_{i}\partial^{i}C^{0}+m^{2}C^{0}=\partial_{i}{\dot{C}}^{i}##

##\implies \partial_{i}\partial^{i}C_{0}+m^{2}C_{0}=\partial^{i}{\dot{C}}_{i}##Let me try to solve the remaining parts of the question.

Construct the canonical momenta ##\Pi_{i}## conjugate to ##C_{i}, i=1,2,3,## and show that the canonical momenta conjugate to ##C_0## is vanishing.

##\Pi_{i}=\frac{\partial \mathcal{L}}{\partial \dot{C}_{i}}=\frac{\partial}{\partial \dot{C}_{i}}\Big(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^{2}C_{\mu}C^{\mu}\Big)##

##=\frac{\partial}{\partial \dot{C}_{i}}\Big(-\frac{1}{2}(\partial_{\mu}C_{\nu})^{2}+\frac{1}{2}(\partial_{\mu}C^{\mu})^{2}\Big)##, where the two Lagrangians are equivalent upto a total derivative and I left out ##\frac{1}{2}m^{2}C_{\mu}C^{\mu}##

##=\frac{\partial}{\partial \dot{C}_{i}}\Big(-\frac{1}{2}(\partial_{0}C_{\nu})(\partial^{0}C^{\nu})+\frac{1}{2}(\partial_{0}C^{0}+\partial_{j}C^{j})(\partial_{0}C^{0}+\partial_{j}C^{j})\Big)##

##=\frac{\partial}{\partial \dot{C}_{i}}\Big(-\frac{1}{2}(\partial_{0}C_{j})(\partial^{0}C^{j})+(\partial_{0}C^{0})(\partial_{j}C^{j})\Big)##

##=(\partial_{0}C_{i})+\delta_{0i}(\partial_{j}C^{j})##.

What do you think?
 

Related to Equations of motion and Hamiltonian density of a massive vector field

1. What are the equations of motion for a massive vector field?

The equations of motion for a massive vector field are given by the Proca equations, which describe the behavior of a massive vector particle in terms of its mass, momentum, and spin. These equations are derived from the Klein-Gordon equation and incorporate a mass term to account for the particle's mass.

2. What is the Hamiltonian density of a massive vector field?

The Hamiltonian density of a massive vector field is a mathematical quantity that describes the energy of the field at each point in space. It is derived from the Lagrangian density of the field and is used to determine the equations of motion for the field. It is an important component of the Hamiltonian formalism, which is a mathematical framework used to describe the dynamics of physical systems.

3. How is the Hamiltonian density related to the equations of motion?

The Hamiltonian density is related to the equations of motion through Hamilton's equations, which state that the time derivatives of the field variables are equal to the partial derivatives of the Hamiltonian density with respect to those variables. In other words, the Hamiltonian density provides a way to calculate the time evolution of the field from its initial conditions.

4. Can the equations of motion and Hamiltonian density be used to describe other types of fields?

Yes, the equations of motion and Hamiltonian density can be generalized to describe other types of fields, such as scalar fields, spinor fields, and tensor fields. However, the specific form of these equations will depend on the nature of the field and its interactions with other fields.

5. How are the equations of motion and Hamiltonian density used in practical applications?

The equations of motion and Hamiltonian density are used in a variety of practical applications, including quantum field theory, particle physics, and cosmology. They provide a mathematical framework for understanding the behavior of physical systems and can be used to make predictions about the behavior of particles and fields under different conditions.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
501
  • Advanced Physics Homework Help
Replies
1
Views
959
  • Advanced Physics Homework Help
Replies
30
Views
5K
  • Advanced Physics Homework Help
Replies
2
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
369
  • Advanced Physics Homework Help
Replies
2
Views
617
Replies
5
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
468
  • Advanced Physics Homework Help
Replies
18
Views
2K
Back
Top