Brightness of two lamps in a circuit having a changing magnetic field

  • #1
songoku
2,294
325
Homework Statement
Please see below
Relevant Equations
Faraday's law
Lenz's law
1695227102326.png


The answer key is (D) but I don't understand how to approach this question.

I am guessing the wire is acting as short circuit path but how to know which bulb will be short - circuited?

Thanks
 
Physics news on Phys.org
  • #2
I don't think D is the correct answer.

Instead of worrying about which bulb is "shorted", think about how you can use Faraday's law. For example, how would you use Faraday's law to determine the current in the light bulbs for the circuit on the left?
 
  • Like
Likes songoku
  • #3
TSny said:
I don't think D is the correct answer.

Instead of worrying about which bulb is "shorted", think about how you can use Faraday's law. For example, how would you use Faraday's law to determine the current in the light bulbs for the circuit on the left?
It depends on the change of the magnetic field.

If the B increases then the current is anticlockwise and if the B decreases then the current is clockwise.

Thanks
 
  • #4
songoku said:
It depends on the change of the magnetic field.

If the B increases then the current is anticlockwise and if the B decreases then the current is clockwise.
Yes. But we are interested in the brightness of the lamps. So, we are interested in the magnitude of the current in the lamps. For the single-loop circuit on the left, can you find an expression for the magnitude of the induced current in the loop, ##I##, in terms of the rate of change of the magnetic flux through the loop , ## \large \frac {d \Phi}{dt}##, and the resistance ##R## of each lamp?
 
  • Like
Likes songoku
  • #5
TSny said:
Yes. But we are interested in the brightness of the lamps. So, we are interested in the magnitude of the current in the lamps. For the single-loop circuit on the left, can you find an expression for the magnitude of the induced current in the loop, ##I##, in terms of the rate of change of the magnetic flux through the loop , ## \large \frac {d \Phi}{dt}##, and the resistance ##R## of each lamp?
$$I=\frac{\frac{d\Phi}{dt}}{2R}$$
 
  • #6
songoku said:
$$I=\frac{\frac{d\Phi}{dt}}{2R}$$
Yes.

Can you do anything similar in the multiloop circuit on the right?
 
  • Like
Likes songoku
  • #7
TSny said:
Yes.

Can you do anything similar in the multiloop circuit on the right?
Assuming the resistance of the wire is negligible, the current flowing in the top loop will be bigger than the lower loop since the area is bigger so the rate of change of magnetic flux is also higher.

The current flowing in the top loop will be ##\frac{\frac{d\Phi_1}{dt}}{R}## and the current flowing in the bottom loop will be ##\frac{\frac{d\Phi_2}{dt}}{R}##.
 
  • #8
Is there any magnetic flux through the bottom loop?
 
  • Like
Likes songoku
  • #9
TSny said:
Is there any magnetic flux through the bottom loop?
Oh I see what it means of the picture. I just assumed that all part inside the loop had magnetic field.

So the induced current on the bottom is zero, that's why L2 goes out. For top loop, the decrease in area does not affect the rate of change of magnetic flux. The induced current will increase since the resistance of the circuit decreases

I suppose the appropriate answer will be (C).
 
  • #10
songoku said:
Oh I see what it means of the picture. I just assumed that all part inside the loop had magnetic field.
Yes, I believe all of the flux that was in the first circuit is in the top loop of the second circuit and there is no flux though the bottom loop of the second circuit.

songoku said:
So the induced current on the bottom is zero, that's why L2 goes out.
Yes, there is no induced emf in the bottom loop. So, there can't be any IR voltage drop across the lower lamp.

songoku said:
For top loop, the decrease in area does not affect the rate of change of magnetic flux. The induced current will increase since the resistance of the circuit decreases

I suppose the appropriate answer will be (C).
Yes.
 
  • Like
Likes songoku
  • #11
Thank you very much TSny
 
  • Like
Likes TSny

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
930
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
18
Views
951
  • Introductory Physics Homework Help
Replies
5
Views
277
  • Introductory Physics Homework Help
Replies
9
Views
992
  • Introductory Physics Homework Help
Replies
9
Views
422
  • Introductory Physics Homework Help
Replies
7
Views
853
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
14
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
1K
Back
Top