- Thread starter
- #1
The general solution of the equation $i^{z}=2$ is...$i^z = 2$
Take the principal log so $\theta\in (-\pi, \pi)$
$$
z\log i = \ln 2\Leftrightarrow z\log |i| + zi\frac{\pi}{2} = \ln 2\Leftrightarrow z = \frac{-2i\ln 2}{\pi}.
$$
This is the only solution correct?
I thought that at first but if you use Mathematica and try values for k, no other value yields 2 except k = 0.The general solution of the equation $i^{z}=2$ is...
$\displaystyle z=-i\ \frac{\ln 2}{\frac{\pi}{2}+2 k \pi}$ (1)
Kind regards
$\chi$ $\sigma$
$k=0$ corresponds to the principal value of $\log i$, which is what the question asks for.I thought that at first but if you use Mathematica and try values for k, no other value yields 2 except k = 0.