Transformation matrix

In linear algebra, linear transformations can be represented by matrices. If



T


{\displaystyle T}
is a linear transformation mapping





R


n




{\displaystyle \mathbb {R} ^{n}}
to





R


m




{\displaystyle \mathbb {R} ^{m}}
and




x



{\displaystyle \mathbf {x} }
is a column vector with



n


{\displaystyle n}
entries, then




T
(

x

)
=
A

x



{\displaystyle T(\mathbf {x} )=A\mathbf {x} }
for some



m
×
n


{\displaystyle m\times n}
matrix



A


{\displaystyle A}
, called the transformation matrix of



T


{\displaystyle T}
. Note that



A


{\displaystyle A}
has



m


{\displaystyle m}
rows and



n


{\displaystyle n}
columns, whereas the transformation



T


{\displaystyle T}
is from





R


n




{\displaystyle \mathbb {R} ^{n}}
to





R


m




{\displaystyle \mathbb {R} ^{m}}
. There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors.

View More On Wikipedia.org
  • 60

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,451
    • Media
      227
    • Reaction score
      10,043
    • Points
      1,237
  • 2

    Rifscape

    A PF Atom
    • Messages
      41
    • Reaction score
      0
    • Points
      31
  • 1

    johnpjust

    A PF Atom
    • Messages
      22
    • Reaction score
      0
    • Points
      31
  • 1

    Th3HoopMan

    A PF Quark From Georgia Tech
    • Messages
      8
    • Reaction score
      0
    • Points
      1
  • 1

    Byang

    A PF Quark
    • Messages
      2
    • Reaction score
      0
    • Points
      1
  • 1

    FluidStu

    A PF Atom From Prague
    • Messages
      26
    • Reaction score
      3
    • Points
      36
  • 1

    johnconner

    A PF Quark
    • Messages
      26
    • Reaction score
      2
    • Points
      3
  • 1

    patric44

    A PF Molecule
    • Messages
      296
    • Reaction score
      39
    • Points
      76
  • 1

    vcsharp2003

    A PF Cell
    • Messages
      897
    • Reaction score
      177
    • Points
      113
  • Back
    Top