Projections

In cartography, a map projection is a way to flatten a globe's surface into a plane in order to make a map. This requires a systematic transformation of the latitudes and longitudes of locations from the surface of the globe into locations on a plane.
All projections of a sphere on a plane necessarily distort the surface in some way and to some extent. Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties. The study of map projections is the characterization of the distortions. There is no limit to the number of possible map projections.
Projections are a subject of several pure mathematical fields, including differential geometry, projective geometry, and manifolds. However, "map projection" refers specifically to a cartographic projection.
Despite the name's literal meaning, projection is not limited to perspective projections, such as those resulting from casting a shadow on a screen, or the rectilinear image produced by a pinhole camera on a flat film plate. Rather, any mathematical function that transforms coordinates from the curved surface distinctly and smoothly to the plane is a projection. Few projections in practical use are perspective.Most of this article assumes that the surface to be mapped is that of a sphere. The Earth and other large celestial bodies are generally better modeled as oblate spheroids, whereas small objects such as asteroids often have irregular shapes. The surfaces of planetary bodies can be mapped even if they are too irregular to be modeled well with a sphere or ellipsoid. Therefore, more generally, a map projection is any method of flattening a continuous curved surface onto a plane.A model globe does not distort surface relationships the way maps do, but maps can be more useful in many situations: they are more compact and easier to store; they readily accommodate an enormous range of scales; they are viewed easily on computer displays; they can be measured to find properties of the region being mapped; they can show larger portions of the Earth's surface at once; and they are cheaper to produce and transport. These useful traits of maps motivate the development of map projections.
The best known map projection is the Mercator projection. Despite its important conformal properties, it has been criticized throughout the twentieth century for enlarging area further from the equator. Equal area map projections such as the Sinusoidal projection and the Gall–Peters projection show the correct sizes of countries relative to each other, but distort angles. The National Geographic Society and most atlases favor map projections that compromise between area and angular distortion, such as the Robinson projection or the Winkel tripel projection

View More On Wikipedia.org
  • 95

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,447
    • Media
      227
    • Reaction score
      10,036
    • Points
      1,237
  • 1

    Kaura

    A PF Atom From Virgo Super Cluster
    • Messages
      122
    • Reaction score
      22
    • Points
      41
  • 1

    Buggsy GC

    A PF Electron From New Zealand
    • Messages
      48
    • Reaction score
      1
    • Points
      14
  • 1

    Elissa Damron

    A PF Electron From Pikeville
    • Messages
      1
    • Reaction score
      0
    • Points
      24
  • 1

    UOAMCBURGER

    A PF Quark
    • Messages
      31
    • Reaction score
      1
    • Points
      4
  • 1

    CGandC

    A PF Molecule
    • Messages
      326
    • Reaction score
      34
    • Points
      73
  • 1

    nomadreid

    A PF Mountain From Israel
    • Messages
      1,674
    • Reaction score
      208
    • Points
      212
  • Back
    Top