Power dissipated

In electrical engineering, the maximum power transfer theorem states that, to obtain maximum external power from a source with a finite internal resistance, the resistance of the load must equal the resistance of the source as viewed from its output terminals. Moritz von Jacobi published the maximum power (transfer) theorem around 1840; it is also referred to as "Jacobi's law".The theorem results in maximum power transfer across the circuit, and not maximum efficiency. If the resistance of the load is made larger than the resistance of the source then efficiency is higher, since a higher percentage of the source power is transferred to the load, but the magnitude of the load power is lower since the total circuit resistance increases.If the load resistance is smaller than the source resistance, then most of the power ends up being dissipated in the source, and although the total power dissipated is higher, due to a lower total resistance, it turns out that the amount dissipated in the load is reduced.
The theorem states how to choose (so as to maximize power transfer) the load resistance, once the source resistance is given. It is a common misconception to apply the theorem in the opposite scenario. It does not say how to choose the source resistance for a given load resistance. In fact, the source resistance that maximizes power transfer from a voltage source is always zero, regardless of the value of the load resistance.
The theorem can be extended to alternating current circuits that include reactance, and states that maximum power transfer occurs when the load impedance is equal to the complex conjugate of the source impedance.
Recent expository articles illustrate how the fundamental mathematics of the maximum power theorem also applies to other physical situations, such as:

mechanical collisions between two objects,
the sharing of charge between two capacitors,
liquid flow between two cylinders
the transmission and reflection of light at the boundary between two media

View More On Wikipedia.org
  • 64

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,447
    • Media
      227
    • Reaction score
      10,036
    • Points
      1,237
  • 1

    skepticwulf

    A PF Electron From Moab, UT
    • Messages
      74
    • Reaction score
      1
    • Points
      11
  • 1

    vizakenjack

    A PF Electron
    • Messages
      57
    • Reaction score
      4
    • Points
      11
  • 1

    kostoglotov

    A PF Electron From Brisbane, Australia
    • Messages
      234
    • Reaction score
      6
    • Points
      20
  • 1

    kamhogo

    A PF Electron From Montréal
    • Messages
      86
    • Reaction score
      6
    • Points
      14
  • 1

    rohanlol7

    A PF Electron
    • Messages
      67
    • Reaction score
      2
    • Points
      11
  • 1

    marino

    A PF Quark
    • Messages
      9
    • Reaction score
      1
    • Points
      1
  • 1

    dwd40physics

    A PF Atom
    • Messages
      32
    • Reaction score
      0
    • Points
      34
  • 1

    guyvsdcsniper

    A PF Atom
    • Messages
      264
    • Reaction score
      37
    • Points
      28
  • Back
    Top