What is Linear algebra: Definition and 999 Discussions

Linear algebra is the branch of mathematics concerning linear equations such as:





a

1



x

1


+

+

a

n



x

n


=
b
,


{\displaystyle a_{1}x_{1}+\cdots +a_{n}x_{n}=b,}
linear maps such as:




(

x

1


,

,

x

n


)


a

1



x

1


+

+

a

n



x

n


,


{\displaystyle (x_{1},\ldots ,x_{n})\mapsto a_{1}x_{1}+\cdots +a_{n}x_{n},}
and their representations in vector spaces and through matrices.Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.
Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear map that best approximates the function near that point.

View More On Wikipedia.org
  1. A

    Orthogonal Projection Problems?

    Summary:: Hello all, I am hoping for guidance on these linear algebra problems. For the first one, I'm having issues starting...does the orthogonality principle apply here? For the second one, is the intent to find v such that v(transpose)u = 0? So, could v = [3, 1, 0](transpose) work?
  2. S

    Determining value of r that makes the matrix linearly dependent

    for problem (a), all real numbers of value r will make the system linearly independent, as the system contains more vectors than entry simply by insepection. As for problem (b), no value of r can make the system linearly dependent by insepection. I tried reducing the matrix into reduced echelon...
  3. S

    Diagonalizing a matrix given the eigenvalues

    The following matrix is given. Since the diagonal matrix can be written as C= PDP^-1, I need to determine P, D, and P^-1. The answer sheet reads that the diagonal matrix D is as follows: I understand that a diagonal matrix contains the eigenvalues in its diagonal orientation and that there must...
  4. F

    Linear Algebra What are good books for a third course in Linear Algebra?

    What are the suitable books in linear algebra for third course for self-study after reading Linear Algebra done right by Axler and Algebra by Artin?
  5. S

    Linear Algebra uniqueness of solution

    My guess is that since there are no rows in a form of [0000b], the system is consistent (the system has a solution). As the first column is all 0s, x1 would be a free variable. Because the system with free variable have infinite solution, the solution is not unique. In this way, the matrix is...
  6. AdvaitDhingra

    Calculus What are some affordable textbooks for learning math concepts for physics?

    Hey guys, so I was on this thread on tips for self studding physics as a high schooler with the aim to become a theoretical (quantum) physicist in the future. I myself am a 15 year old who wants to become a theoretical physicist in the future. A lot of people in the thread were saying that...
  7. F

    Linear Algebra What are good second course books in linear algebra for self-study?

    What are best second course(undergraduate) books in linear algebra for self-study?I have already read Introduction to Linear Algebra by Lang.
  8. appletree23

    Help with linear algebra: vectorspace and subspace

    So the reason why I'm struggling with both of the problems is because I find vector spaces and subspaces hard to understand. I have read a lot, but I'm still confussed about these tasks. 1. So for problem 1, I can first tell you what I know about subspaces. I understand that a subspace is a...
  9. G

    Subspace Help: Properties & Verifying Examples

    Summary:: Properties of subspaces and verifying examples Hi, My textbook gives some examples relating to subspaces but I am having trouble intuiting them. Could someone please help me understand the five points they are attempting to convey here (see screenshot).
  10. DartomicTech

    Prerequisites for the textbook "Linear Algebra" (2nd Edition)?

    Summary:: What pre-requisites are required in order to learn the textbook "Linear Algebra (2nd Edition) 2nd Edition by Kenneth M Hoffman (Author), Ray Kunze (Author)" Sorry if this is the wrong section to ask what the title and subject state. I read some of chapter 1 already, and that all...
  11. K

    System of equations and solving for an unknown

    The first thing I do is making the argumented matrix: Then I try to rearrange to make the row echelon form. But maybe that's what confusses me the most. I have tried different ways of doing it, for example changing the order of the equations. I always end up with ##k+number## expression in...
  12. A

    Linear algebra projections commutativity

    Textbook answer: "If P1P2 = P2P1 then S is contained in T or T is contained in S." My query: If P1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}and P2 =\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} as far as I...
  13. Eclair_de_XII

    Am I using quotient spaces correctly in this linear algebra proof?

    %%% Assume that ##X/Y## is defined. Since ##\dim Y = \dim X##, it follows that ##\dim {X/Y}=0## and that ##X/Y=\{0\}##. Suppose that ##Y## is a proper subspace of ##X##. Then there is an ##x\in X## such that ##x\notin Y##. Let us consider the equivalence class: ##\{x\}_Y=\{x_0\in...
  14. J

    Confused with this proof for the Cauchy Schwarz inequality

    Im confused as finding the minimum value of lambda is an important part of the proof but it isn't clear to me that the critical point is a minimum
  15. Santiago24

    Linear Algebra I need textbook recommendations to learn linear algebra by myself

    Hi PF community, recently i learned about Calculus in one variables and several, so now i'd like to study linear algebra by myself in a undergraduate level, in order to do that i need some textbooks recommendations. I'll be waiting for your recommendations :).
  16. F

    Change of basis to express a matrix relative to a set of basis matrices

    Hello, I am studying change of basis in linear algebra and I have trouble figuring what my result should look like. From what I understand, I need to express the "coordinates" of matrix ##A## with respect to the basis given in ##S##, and I can easily see that ##A = -A_1 + A_2 - A_3 + 3A_4##...
  17. username123456789

    I Invertible Polynomials: P2 (R) → P2 (R)

    0 Let T: P2 (R) → P2 (R) be the linear map defined by T(p(x)) = p''(x) - 5p'(x). Is T invertible ? P2 (R) is the vector space of polynomials of degree 2 or less
  18. S

    How Do Vector Spaces of Linear Maps Differ from Standard Vector Spaces?

    Solution 1. Based on my analysis, elements of ##V## is a map from the set of numbers ##\{1, 2, ..., n\}## to some say, real number (assuming ##F = \mathbb{R}##), so that an example element of ##F## is ##x(1)##. An example element of the vector space ##F^n## is ##(x_1, x_2, ..., x_n)##. From...
  19. J

    I Zero-point energy of the harmonic oscillator

    First time posting in this part of the website, I apologize in advance if my formatting is off. This isn't quite a homework question so much as me trying to reason through the work in a way that quickly makes sense in my head. I am posting in hopes that someone can tell me if my reasoning is...
  20. K

    Linear algebra inner products, self adjoint operator,unitary operation

    b) c and d): In c) I say that ##L_h## is only self adjoint if the imaginary part of h is 0, is this correct? e) Here I could only come up with eigenvalues when h is some constant say C, then C is an eigenvalue. But I' can't find two.Otherwise does b-d above look correct? Thanks in advance!
  21. F

    I Proving linear independence of two functions in a vector space

    Hello, I am doing a vector space exercise involving functions using the free linear algebra book from Jim Hefferon (available for free at http://joshua.smcvt.edu/linearalgebra/book.pdf) and I have trouble with the author's solution for problem II.1.24 (a) of page 117, which goes like this ...
  22. K

    Show that V is an internal direct sum of the eigenspaces

    I was in an earlier problem tasked to do the same but when V = ##M_{2,2}(\mathbb R)##. Then i represented each matrix in V as a vector ##(a_{11}, a_{12}, a_{21}, a_{22})## and the operation ##L(A)## could be represented as ##L(A) = (a_{11}, a_{21}, a_{12}, a_{22})##. This method doesn't really...
  23. K

    What can we say about the eigenvalues if ##L^2=I##?

    This was a problem that came up in my linear algebra course so I assume the operation L is linear. Or maybe that could be derived from given information. I don't know how though. I don't quite understand how L could be represented by anything except a scalar multiplication if L...
  24. LCSphysicist

    Linear algebra invertible transformation of coordinates

    ##A^{x'} = T(A^{x})##, where T is a linear transformation, in such way maybe i could express the transformation as a changing of basis from x to x' matrix: ##A^{x} = T_{mn}(A^{x'})##, in such conditions, i could say det ##T_{mn} \neq 0##. But how to deal with, for example, ##(x,y) -> (e^x,e^y)## ?
  25. K

    I Show that ##\mathbb{C}## can be obtained as 2 × 2 matrices

    I have this problem in my book: Show that ##\mathbb{C}## can be obtained as 2 × 2 matrices with coefficients in ##\mathbb{R}## using an arbitrary 2 × 2 matrix ##J## with a characteristic polynomial that does not contain real zeros. In the picture below is the given solution for this: I...
  26. K

    I Finite fields, irreducible polynomial and minimal polynomial theorem

    I thought i understood the theorem below: i) If A is a matrix in ##M_n(k)## and the minimal polynomial of A is irreducible, then ##K = \{p(A): p (x) \in k [x]\}## is a finite field Then this example came up: The polynomial ##q(x) = x^2 + 1## is irreducible over the real numbers and the matrix...
  27. E

    MHB Resource for learning linear algebra

    I want to take some courses that involve heavy math, so I have been learning maths on the khan academy site: precalculus, calculus, statistics etc. But one fundamental area of maths the khan academy site doesn't have is a course on linear algebra. I really need to learn and use linear algebra in...
  28. K

    I Why does A squared not equal A times A when k = Z2?

    In my book no explanation for this concept is given and i can't find anything about it when I am searching. One example that was given was: Let $$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$ with ##k=\mathbb{Z}_2## I think k is the set of scalars for a vector that can be multiplied with...
  29. K

    I Trying to get a better understanding of the quotient V/U in linear algebra

    Hi! I want to check if i have understood concepts regarding the quotient U/V correctly or not. I have read definitions that ##V/U = \{v + U : v ∈ V\}## . U is a subspace of V. But v + U is also defined as the set ##\{v + u : u ∈ U\}##. So V/U is a set of sets is this the correct understanding...
  30. K

    Linear algebra, find a basis for the quotient space

    Let V = C[x] be the vector space of all polynomials in x with complex coefficients and let ##W = \{p(x) ∈ V: p (1) = p (−1) = 0\}##. Determine a basis for V/W The solution of this problem that i found did the following: Why do they choose the basis to be {1+W, x + W} at the end? I mean since...
  31. J

    I Properties of a unitary matrix

    So let's say that we have som unitary matrix, ##S##. Let that unitary matrix be the scattering matrix in quantum mechanics or the "S-matrix". Now we all know that it can be defined in the following way: $$\psi(x) = Ae^{ipx} + Be^{-ipx}, x<<0$$ and $$ \psi(x) = Ce^{ipx} + De^{-ipx}$$. Now, A and...
  32. L

    MHB Connecting linear algebra concepts to groups

    The options are rank(B)+null(B)=n tr(ABA^{−1})=tr(B) det(AB)=det(A)det(B) I'm thinking that since it's invertible, I would focus on the determinant =/= 0. I believe the first option is out, because null (B) would be 0 which won't be helpful. The second option makes the point that AA^{−1} is I...
  33. MexChemE

    My first proof ever - Linear algebra

    First, a little context. It's been a while since I last posted here. I am a chemical engineer who is currently preparing for grad school, and I've been reviewing linear algebra and multivariable calculus for the last couple of months. I have always been successful at math (at least in the...
  34. U

    Other Elementary Linear Algebra book

    Hello I am looking for an introductory linear algebra book. I attend university next year so I want to prepare and I want to become an engineer. I have a good background in the prerequisites, except I don't know anything about matrices or determinants. I am looking for the more application side...
  35. Demandish

    Introductory Linear Algebra Texts

    I am currently enrolled in Multivariate Calculus and am looking to get build up a solid base of mathematics for undergraduate physics curriculum. I am looking for a Linear algebra book that will aid me in my quest. I currently own Axler's Linear Algebra Done Right, but I fear it is too...
  36. S

    Setting Free variables when finding eigenvectors

    upon finding the eigenvalues and setting up the equations for eigenvectors, I set up the following equations. So I took b as a free variable to solve the equation int he following way. But I also realized that it would be possible to take a as a free variable, so I tried taking a as a free...
  37. S

    Solving a Problem in My Assignment: X1, X2, and X3

    This is just a small part of a question I have in my assignment and I'm not sure how to solve it, nothing in my eBook or our presentation slides hints at a similar problem, what I tried was I noticed that X1 and X2 have the difference of (3,3,3) and I assume either X3 = (3,3,3) or X3 = (7,8,9)...
  38. S

    Matrix concept Questions (invertibility, det, linear dependence, span)

    I have a trouble showing proofs for matrix problems. I would like to know how A is invertible -> det(A) not 0 -> A is linearly independent -> Column of A spans the matrix holds for square matrix A. It would be great if you can show how one leads to another with examples! :) Thanks for helping...
  39. X

    Introduction to Linear Algebra: Solving Real-World Problems

    Summary:: Linear algebra 1.Let a a fixed vector of the Euclidean space E, a is a fixed real number. Is there a set of all vectors from E for which (x, a) = d the linear subspace E / 2. Let nxn be a matrix A that is not degenerate. Prove that the characteristic polynomials f (λ) of the matrix A...
  40. MidgetDwarf

    I Explanation of a Line of a proof in Axler Linear Algebra Done Right 3r

    ∈Was wondering if anyone here could help me with an explanation as to how Axler arrived at a particular step in a proof. These are the relevant definitions listed in the book: Definition of Matrix of a Linear Map, M(T): Suppose ##T∈L(V,W)## and ##v_1,...,v_n## is a basis of V and ##w_1...
  41. A

    MHB Introduction to linear algebra

    prove that $2+8{\sqrt{-5}}$ is unit and irreducible or not in $\mathbb Z+\mathbb Z{\sqrt{-5}}$.
  42. A

    MHB Introduction to linear algebra

    prove that u(z+zw)={+1,-1,+w,-w,+w^2,-w^2}
  43. SpaceMonkeyCaln

    [Linear Algebra] Matrix Transformations

    Evening, The reason for this post is because as the title suggests, I have a question concerning matrix transformation. These are essentially test prep problems and I am quite stuck to be honest. Here are the [questions](https://prnt.sc/riq7m0) and here are the...
  44. G

    Fast pentadiagonal matrix solver

    Hello, I'm currently writing a numerical simulation code for solving 2D steatdy-state heat conduction problems (diffusion equation). After reading and following these two book references (Numerical Heat Transfer and Fluid Flow from Patankar and And Introduction to Computational Fluid Dynamics...
  45. Mondayman

    Linear Algebra What are some recommended second texts for self-studying linear algebra?

    Hello folks, I am currently finishing up a class on linear algebra, covering vector spaces, bases and dimension, geometry of n-dimensional space, linear transformations and systems of linear equations. I am only getting accustomed to proof writing for the first time in this course. However, I...
  46. B

    Question about linear transformations

    Summary:: linear transformations Hello everyone, firstly sorry about my English, I'm from Brazil. Secondly I want to ask you some help in solving a question about linear transformations. Here is the question:Consider the linear transformation described by the matrix \mathsf{A} \in \Re...
  47. Lauren1234

    Proving Spectrums: K6-$\lambda$I Matrix Trace

    This is my solution so far however I’m not sure where to go from here I think it’s something to do with the trace of the matrix but. This is the full solution but I did row reduction on the matrix K6- $lambda$I
  48. M

    Help with a Linear Algebra problem please

    For the following statement: V = R ≥ 1; x ⊕ y = max (x,y), with z = 1 My attempt is as follows: Should R3 be z ⊕ (x ⊕ y)? I am confused at to the notation of this rule. Moreover, I am struggling to find examples and answers of such problems in linear algebra online. Should I always view such...
Back
Top