Gaussian distribution

In probability theory, a normal (or Gaussian or Gauss or Laplace–Gauss) distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is




f
(
x
)
=


1

σ


2
π






e




1
2




(



x

μ

σ


)


2






{\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {x-\mu }{\sigma }}\right)^{2}}}
The parameter



μ


{\displaystyle \mu }
is the mean or expectation of the distribution (and also its median and mode), while the parameter



σ


{\displaystyle \sigma }
is its standard deviation. The variance of the distribution is




σ

2




{\displaystyle \sigma ^{2}}
. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distribution as the number of samples increases. Therefore, physical quantities that are expected to be the sum of many independent processes, such as measurement errors, often have distributions that are nearly normal.Moreover, Gaussian distributions have some unique properties that are valuable in analytic studies. For instance, any linear combination of a fixed collection of normal deviates is a normal deviate. Many results and methods, such as propagation of uncertainty and least squares parameter fitting, can be derived analytically in explicit form when the relevant variables are normally distributed.
A normal distribution is sometimes informally called a bell curve. However, many other distributions are bell-shaped (such as the Cauchy, Student's t, and logistic distributions).

View More On Wikipedia.org
  • 56

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,448
    • Media
      227
    • Reaction score
      10,036
    • Points
      1,237
  • 2

    fab13

    A PF Cell
    • Messages
      312
    • Reaction score
      6
    • Points
      103
  • 1

    SpecGuest

    A PF Quark
    • Messages
      4
    • Reaction score
      0
    • Points
      1
  • 1

    estebanox

    A PF Atom
    • Messages
      26
    • Reaction score
      0
    • Points
      31
  • 1

    asilvester635

    A PF Quark
    • Messages
      12
    • Reaction score
      0
    • Points
      4
  • 1

    Kristoffer Linder

    A PF Electron
    • Messages
      3
    • Reaction score
      0
    • Points
      14
  • 1

    btb4198

    A PF Molecule
    • Messages
      572
    • Reaction score
      10
    • Points
      73
  • 1

    ProbablySid

    A PF Quark
    • Messages
      4
    • Reaction score
      3
    • Points
      3
  • 1

    ashah99

    A PF Electron
    • Messages
      60
    • Reaction score
      2
    • Points
      13
  • 1

    Capitano

    A PF Quark
    • Messages
      2
    • Reaction score
      0
    • Points
      1
  • 1

    geo101

    A PF Molecule
    • Messages
      56
    • Reaction score
      0
    • Points
      56
  • 1

    tfhub

    A PF Quark
    • Messages
      11
    • Reaction score
      0
    • Points
      1
  • 1

    fermi

    A PF Molecule From california
    • Messages
      76
    • Reaction score
      5
    • Points
      59
  • 1

    Jamil

    A PF Quark
    • Messages
      8
    • Reaction score
      0
    • Points
      1
  • 1

    AlanKirby

    A PF Electron
    • Messages
      20
    • Reaction score
      0
    • Points
      11
  • 1

    Aerozeppelin

    A PF Electron
    • Messages
      18
    • Reaction score
      0
    • Points
      19
  • Back
    Top