Exterior algebra

In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors



u


{\displaystyle u}
and



v


{\displaystyle v}
, denoted by



u

v


{\displaystyle u\wedge v}
, is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of



u

v


{\displaystyle u\wedge v}
can be interpreted as the area of the parallelogram with sides



u


{\displaystyle u}
and



v


{\displaystyle v}
, which in three dimensions can also be computed using the cross product of the two vectors. More generally, all parallel plane surfaces with the same orientation and area have the same bivector as a measure of their oriented area. Like the cross product, the exterior product is anticommutative, meaning that



u

v
=

(
v

u
)


{\displaystyle u\wedge v=-(v\wedge u)}
for all vectors



u


{\displaystyle u}
and



v


{\displaystyle v}
, but, unlike the cross product, the exterior product is associative.
When regarded in this manner, the exterior product of two vectors is called a 2-blade. More generally, the exterior product of any number k of vectors can be defined and is sometimes called a k-blade. It lives in a space known as the k-th exterior power. The magnitude of the resulting k-blade is the volume of the k-dimensional parallelotope whose edges are the given vectors, just as the magnitude of the scalar triple product of vectors in three dimensions gives the volume of the parallelepiped generated by those vectors.
The exterior algebra, or Grassmann algebra after Hermann Grassmann, is the algebraic system whose product is the exterior product. The exterior algebra provides an algebraic setting in which to answer geometric questions. For instance, blades have a concrete geometric interpretation, and objects in the exterior algebra can be manipulated according to a set of unambiguous rules. The exterior algebra contains objects that are not only k-blades, but sums of k-blades; such a sum is called a k-vector. The k-blades, because they are simple products of vectors, are called the simple elements of the algebra. The rank of any k-vector is defined to be the smallest number of simple elements of which it is a sum. The exterior product extends to the full exterior algebra, so that it makes sense to multiply any two elements of the algebra. Equipped with this product, the exterior algebra is an associative algebra, which means that



α

(
β

γ
)
=
(
α

β
)

γ


{\displaystyle \alpha \wedge (\beta \wedge \gamma )=(\alpha \wedge \beta )\wedge \gamma }
for any elements



α
,
β
,
γ


{\displaystyle \alpha ,\beta ,\gamma }
. The k-vectors have degree k, meaning that they are sums of products of k vectors. When elements of different degrees are multiplied, the degrees add like multiplication of polynomials. This means that the exterior algebra is a graded algebra.
The definition of the exterior algebra makes sense for spaces not just of geometric vectors, but of other vector-like objects such as vector fields or functions. In full generality, the exterior algebra can be defined for modules over a commutative ring, and for other structures of interest in abstract algebra. It is one of these more general constructions where the exterior algebra finds one of its most important applications, where it appears as the algebra of differential forms that is fundamental in areas that use differential geometry. The exterior algebra also has many algebraic properties that make it a convenient tool in algebra itself. The association of the exterior algebra to a vector space is a type of functor on vector spaces, which means that it is compatible in a certain way with linear transformations of vector spaces. The exterior algebra is one example of a bialgebra, meaning that its dual space also possesses a product, and this dual product is compatible with the exterior product. This dual algebra is precisely the algebra of alternating multilinear forms, and the pairing between the exterior algebra and its dual is given by the interior product.

View More On Wikipedia.org
  • 9

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,451
    • Media
      227
    • Reaction score
      10,048
    • Points
      1,237
  • 2

    MisterX

    A PF Cell From United States
    • Messages
      764
    • Reaction score
      71
    • Points
      113
  • 1

    observer1

    A PF Electron
    • Messages
      82
    • Reaction score
      11
    • Points
      13
  • 1

    Wledig

    A PF Electron
    • Messages
      69
    • Reaction score
      1
    • Points
      16
  • 1

    SVN

    A PF Atom
    • Messages
      49
    • Reaction score
      1
    • Points
      33
  • 1

    bronxman

    A PF Quark
    • Messages
      32
    • Reaction score
      0
    • Points
      1
  • Back
    Top