What is Coulomb's law: Definition and 403 Discussions

Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force. The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point, as it made it possible to discuss the quantity of electric charge in a meaningful way.The law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them,





|

F

|

=

k

e






|


q

1



q

2



|



r

2






{\displaystyle |F|=k_{\text{e}}{\frac {|q_{1}q_{2}|}{r^{2}}}}
Here, ke is Coulomb's constant (ke ≈ 8.988×109 N⋅m2⋅C−2), q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges.
The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.
Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive. Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways. The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.

View More On Wikipedia.org
  1. D

    Newton's gravity and Coulomb's law are not quite accurate->

    If you combine Archimedes' laws of lever with Newton's gravity and Coulomb's law you'll see that the last are not quite accurate. \frac{F_1}{F_2}=\frac{M_1}{M_2}=\frac{D_2}{D_1} is the Archimedes' law of lever. ------------------------------- F=force M=mass D=equi.distance...
  2. M

    What Went Wrong with My Calculation for Problem 14?

    Problem 11. Find the magnitude electric field at a point midway between two charges of 34.4*10^9 C and 78.6*10^-9 C separated by a distance of 58.2 cm. Answer in N/C. Note: Do i use coulomb's law? If so, when i multiply the constant to the quiotent is that my answer? Problem 14. An...
  3. C

    Coulomb's Law and stationary proton

    Yeah, I'm having difficulties with this one question... A stationary proton holds an electron in suspension underneath it against the force of gravity. How far below the proton would the electron be suspended? I understand that Fe = Fg so i would have __ = mg... but i don't know what...
Back
Top