Atomic radii

The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a bonded state; however theoretical calculations are of course simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.
Depending on the definition, the term may apply to atoms in condensed matter, covalently bonding in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. The value of the radius may depend on the atom's state and context.Electrons do not have definite orbits nor sharply defined ranges. Rather, their positions must be described as probability distributions that taper off gradually as one moves away from the nucleus, without a sharp cutoff; these are referred to as atomic orbitals or electron clouds. Moreover, in condensed matter and molecules, the electron clouds of the atoms usually overlap to some extent, and some of the electrons may roam over a large region encompassing two or more atoms.
Under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 ångströms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1–10 fm), and less than 1/1000 of the wavelength of visible light (400–700 nm).

For many purposes, atoms can be modeled as spheres. This is only a crude approximation, but it can provide quantitative explanations and predictions for many phenomena, such as the density of liquids and solids, the diffusion of fluids through molecular sieves, the arrangement of atoms and ions in crystals, and the size and shape of molecules.

View More On Wikipedia.org
  • 16

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,445
    • Media
      227
    • Reaction score
      10,026
    • Points
      1,237
  • 1

    skepticwulf

    A PF Electron From Moab, UT
    • Messages
      74
    • Reaction score
      1
    • Points
      11
  • 1

    TheSodesa

    A PF Electron
    • Messages
      224
    • Reaction score
      7
    • Points
      16
  • 1

    Bobs

    A PF Electron
    • Messages
      14
    • Reaction score
      1
    • Points
      12
  • Back
    Top