Aharonov-bohm

The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic potential (φ, A), despite being confined to a region in which both the magnetic field B and electric field E are zero. The underlying mechanism is the coupling of the electromagnetic potential with the complex phase of a charged particle's wave function, and the Aharonov–Bohm effect is accordingly illustrated by interference experiments.
The most commonly described case, sometimes called the Aharonov–Bohm solenoid effect, takes place when the wave function of a charged particle passing around a long solenoid experiences a phase shift as a result of the enclosed magnetic field, despite the magnetic field being negligible in the region through which the particle passes and the particle's wavefunction being negligible inside the solenoid. This phase shift has been observed experimentally. There are also magnetic Aharonov–Bohm effects on bound energies and scattering cross sections, but these cases have not been experimentally tested. An electric Aharonov–Bohm phenomenon was also predicted, in which a charged particle is affected by regions with different electrical potentials but zero electric field, but this has no experimental confirmation yet. A separate "molecular" Aharonov–Bohm effect was proposed for nuclear motion in multiply connected regions, but this has been argued to be a different kind of geometric phase as it is "neither nonlocal nor topological", depending only on local quantities along the nuclear path.Werner Ehrenberg (1901–1975) and Raymond E. Siday first predicted the effect in 1949. Yakir Aharonov and David Bohm published their analysis in 1959. After publication of the 1959 paper, Bohm was informed of Ehrenberg and Siday's work, which was acknowledged and credited in Bohm and Aharonov's subsequent 1961 paper. The effect was confirmed experimentally, with a very large error, while Bohm was still alive. By the time the error was down to a respectable value, Bohm had died.

View More On Wikipedia.org
  • 12

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,447
    • Media
      227
    • Reaction score
      10,036
    • Points
      1,237
  • 1

    LarryS

    Larry Seabrook From Southern California
    • Messages
      349
    • Reaction score
      33
    • Points
      156
  • 1

    vincequantum93

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • 1

    Auto-Didact

    A PF Cell
    • Messages
      751
    • Reaction score
      562
    • Points
      106
  • 1

    dude2

    A PF Quark
    • Messages
      5
    • Reaction score
      0
    • Points
      4
  • 1

    KDPhysics

    A PF Atom
    • Messages
      74
    • Reaction score
      23
    • Points
      33
  • 1

    Joker93

    A PF Molecule From Cyprus
    • Messages
      504
    • Reaction score
      36
    • Points
      77
  • Back
    Top