Recent content by Jeffrey Yang

  1. J

    A How to understand the electric-field operator?

    Well, maybe my express is not professional. What I intend to express is just because in thermal equilibrium, finally the ensemble averaged photon number ##n## should equal to the Bose-Einstein probability. What I'm thinking about is how these occupation probability is finally transferred to the...
  2. J

    A How to understand the electric-field operator?

    Em..I'm not sure whether I understand your reply correctly. Here are my mind: Let's say if now we are talking about the field in the space causing light emission of a certain thermalized source (heat body, semiconductor ...). As we said, the emission operator has an eigenvalue ##n+1 =...
  3. J

    A How to understand the electric-field operator?

    Hi, thanks for your answer. Well, what you are talking about make sense to me. However, it is always confusing to me that if the the 1 or 1/2 (symmetrized operator) is the spontaneous emission term, why we always ignore this term when we discuss about thermal radiation? Let's say thermal...
  4. J

    A How to understand the electric-field operator?

    I know the positive field operator E+ is actually an annihilation operator a while the negative field E- is a creation operator a+. I also learned that the absorption process can be represented as E-E+, which should be the number of photons n accroding to the principle of ladder operator. Also...
  5. J

    Increase Phase Velocity by Losing Power ?

    Thanks for your reply. I still cannot understand the internal relationship between "losing energy" and "change of phase velocity", could you please explain more about this?
  6. J

    Green's first identity at the boundary

    As required by the Green's identity, the integrated function has to be smooth and continuous in the integration region Ω. How about if the function is just discontinuous at the boundary? Actually, this function is an electric field. So its tangential component is naturally continuous, but the...
  7. J

    Increase Phase Velocity by Losing Power ?

    I just read some words from the book Optical Waveguide Theory by Snyder, Allan W., p226. It says that "However, although it is possible for the phase velocity of a mode to exceed the maximum speed of light in the cladding (of waveguide), c/n_cl, this cannot occur without losing power to...
  8. J

    When can I use Helmholtz equation for electromagnetics

    The complete Maxwell wave equation for electromagnetic field using the double curl operator "∇×∇×". Only when the transverse condition is hold, this operator can equal to the Laplace operator and form the helmholtz. My question is what's the condition can we use the helmoltz equation instead of...
  9. J

    Green's first identity at the boundary

    Thanks to your reply Em...Exactly same to what I'm thinking about. Although the function is discontinuous at the boundary, that doesn't mean this differential result is not well behaved. Then we should be able to extend the function safely and then use the Green's identity.
  10. J

    Green's first identity at the boundary

    As required by the Green's identity, the integrated function has to be smooth and continuous in the integration region Ω. How about if the function is just discontinuous at the boundary? For example, I intend to make a volume integration of a product of electric fields, the field function is...
  11. J

    Energy of electron-hole pairs in 3D space

    Dear All: I'm trying to use fluctuation dissipation theorem to describe spontaneous photon emission process by electron-hole recombination in semiconductor material. I notice that all the references using such a method considers the dipole's degree of freedom separately, for example in x, y, z...
  12. J

    Photonic local density of states and field intensity

    Dear All: I'm very confusing with the relationship between photonic local density of states and the field intensity. In thermal equilibrium, the field intensity should be proportional to the photon's number (or squared) and also be proportional to the local density of states. We know that this...
  13. J

    Dissipation function in fluctuation dissipation theory

    Hello every: Actually, there are 2 questions. The first one is how to understand the dissipation function used in the fluctuation dissipation theory. I notice that for a dielectric material with a complex dielectric function, this dissipation function will be the imaginary part of the...
  14. J

    Calculation and application of dyadic Green's function

    Hello everyone: I'm confusing with the construction and application of dyadic green's function. If we are in the ideal resonant system where only certain resonant mode is supported in this space (such as cavity), the Green's function can be constructed by the mode expansion that is: Gij(r,r')...
Back
Top