total angular momentum

In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin).
If s is the particle's spin angular momentum and ℓ its orbital angular momentum vector, the total angular momentum j is

The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps:
where ℓ is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is the spin quantum number (parameterizing the spin).
The relation between the total angular momentum vector j and the total angular momentum quantum number j is given by the usual relation (see angular momentum quantum number)

The vector's z-projection is given by

where mj is the secondary total angular momentum quantum number, and the






{\displaystyle \hbar }
is the reduced Planck's constant. It ranges from −j to +j in steps of one. This generates 2j + 1 different values of mj.
The total angular momentum corresponds to the Casimir invariant of the Lie algebra so(3) of the three-dimensional rotation group.

View More On Wikipedia.org
  • 62

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,447
    • Media
      227
    • Reaction score
      10,036
    • Points
      1,237
  • 1

    dwd40physics

    A PF Atom
    • Messages
      32
    • Reaction score
      0
    • Points
      34
  • 1

    kirito

    A PF Quark
    • Messages
      30
    • Reaction score
      5
    • Points
      3
  • Back
    Top