# Z = X/Y independant continuous random variables

#### Barioth

##### Member
Hi,

Let's say I'm given X and Y identical independant continuous random variables.

We pose Z =X/Y, I remember there is a way to find the density function of Z, altough I can't get to remember how to do it and my probability book is out of town.(And I'm not so sure what to look for in google)

If someone could redirect me to some lecture about this kind of problem I would be very happy!

Thanks for passing by

#### chisigma

##### Well-known member
Hi,

Let's say I'm given X and Y identical independant continuous random variables.

We pose Z =X/Y, I remember there is a way to find the density function of Z, altough I can't get to remember how to do it and my probability book is out of town.(And I'm not so sure what to look for in google)

If someone could redirect me to some lecture about this kind of problem I would be very happy!

Thanks for passing by
http://www.mathhelpboards.com/f52/unsolved-statistics-questions-other-sites-932/index4.html#post5581

Kind regards

$\chi$ $\sigma$

#### zzephod

##### Well-known member
Hi,

Let's say I'm given X and Y identical independant continuous random variables.

We pose Z =X/Y, I remember there is a way to find the density function of Z, altough I can't get to remember how to do it and my probability book is out of town.(And I'm not so sure what to look for in google)

If someone could redirect me to some lecture about this kind of problem I would be very happy!

Thanks for passing by
Ratio distribution - Wikipedia, the free encyclopedia

.