Xojessilynox's question at Yahoo Answers involving integration

  • MHB
  • Thread starter Chris L T521
  • Start date
  • Tags
    Integration
In summary, the question involves evaluating the integral of a rational function. The process starts with finding the partial fraction decomposition and solving for the coefficients. This leads to the integration of three different integrals, each requiring a different approach. Finally, combining all the steps, the integral is evaluated to be $\dfrac{1}{2} \left[\ln(x^2+8x+17) - 47\arctan(x+4) - \dfrac{3(13x+55)}{x^2+8x+17} \right] + C$.
  • #1
Chris L T521
Gold Member
MHB
915
0
Here is the question.

CALC 2: evaluate the integral x^3+8x^2+26x-3 / (x^2+8x+17)^2? said:
I can't find the answer to this question. I keep getting this wrong too just like all the other problems. I need help please and thank you!

Here is a link to the question:

CALC 2: evaluate the integral x^3+8x^2+26x-3 / (x^2+8x+17)^2? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
  • #2
Re: xojessilynox's question at yahoo answers involving integration

Hi xojessilynox,

To evaluate $\displaystyle\int \frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2}\,dx$, we proceed first by partial fractions.

The denominator contains a power of an irreducible quadratic, so our partial fraction decomposition takes on the form
\[\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2} = \frac{Ax+B}{x^2+8x+17} + \frac{Cx+D}{(x^2+8x+17)^2}.\]

Multiplying both sides by the common denominator gives us
\[\begin{aligned} x^3+8x^2+26x-3 &= (Ax+B)(x^2+8x+17)+Cx+D\\ &= Ax^3+(8A+B)x^2+(17A+8B+C)x+17B+D. \end{aligned}\]
Comparing coefficients gives rise to the following system of equations:
\[\left\{\begin{aligned} A &= 1\\ 8A+B &= 8\\ 17A+8B+C &= 26\\ 17B+D &= -3\end{aligned}\right.\]
Which has the solutions $A=1$, $B=0$, $C=9$ and $D=-3$ (Verify). Therefore,
\[\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2} = \frac{x}{x^2+8x+17} + \frac{9x-3}{(x^2+8x+17)^2}\]
and thus
\[\begin{aligned} \int\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2}\,dx &= \int\frac{x}{x^2+8x+17}\,dx + \int\frac{9x-3}{(x^2+8x+17)^2}\,dx\\ &= \int\frac{x}{(x+4)^2+1}\,dx + 3\int\frac{3x-1}{((x+4)^2+1)^2}\,dx\\ &= \int\frac{x+4}{(x+4)^2+1}\,dx - \int\frac{4}{(x+4)^2+1}\,dx +3\int\frac{3x-1}{((x+4)^2+1)^2}\,dx. \end{aligned}\]
Let's focus on each of these three integrals one at a time.


Consider
\[\int\frac{x+4}{(x+4)^2+1}\,dx.\]
Making the substitution $u=(x+4)^2+1\implies \,du=2(x+4)\,dx \implies \frac{1}{2}\,du=(x+4)\,dx$, we see that
\[\begin{aligned} \int\frac{x+4}{(x+4)^2+1}\,dx \xrightarrow{u=(x+4)^2+1}{} \frac{1}{2}\int\frac{\,du}{u} &= \frac{1}{2}\ln|u|+C\\ &=\frac{1}{2}\ln|(x+4)^2+1|+C \\ &= \frac{1}{2}\ln(x^2+8x+17)+C.\end{aligned}\]
Next, let us consider
\[\int\frac{4}{(x+4)^2+1}\,dx\]
Making the substitution $u=x+4\implies \,du=\,dx$, we see that
\[\begin{aligned} \int\frac{4}{(x+4)^2+1}\,dx \xrightarrow{u=x+4}{} \int\frac{4}{u^2+1}\,du &= 4\arctan(u)+C\\ &= 4\arctan(x+4)+C\end{aligned}\]
Finally, we consider
\[\int\frac{3x-1}{((x+4)^2+1)^2}\,dx\]
To compute this guy, we use the trig substitution $x+4=\tan\vartheta \implies x=\tan\vartheta-4$. Thus, $\,dx=\sec^2\vartheta\,d\vartheta$ and we now see that
\[\begin{aligned} \int\frac{3x-1}{((x+4)^2+1)^2}\,dx \xrightarrow{x+4=\tan\vartheta}{} \int\frac{3(\tan\vartheta -4)-1}{(\tan^2\vartheta+1)^2} \sec^2\vartheta\,d\vartheta &= \int\frac{3\tan\vartheta - 13}{(\sec^2\vartheta)^2} \sec^2\vartheta\,d\vartheta\\ &= \int\frac{3\tan\vartheta -13}{\sec^2\vartheta} \,d\vartheta\\ &= \int (3\tan\vartheta\cos^2\vartheta - 13\cos^2\vartheta) \,d\vartheta\\ &= \int (3\sin\vartheta\cos\vartheta -13\cos^2\vartheta) \,d\vartheta\\ &=\int (\tfrac{3}{2}\sin(2\vartheta)- \tfrac{13}{2}(1+\cos(2\vartheta))) \,d\vartheta\\ &= \int (\tfrac{3}{2}\sin(2\vartheta) -\tfrac{13}{2} -\tfrac{13}{2}\cos(2\vartheta)) \,d\vartheta\\ &= -\tfrac{3}{4}\cos(2\vartheta) -\tfrac{13}{2}\vartheta -\tfrac{13}{4}\sin(2\theta)+C\\ &= -\tfrac{3}{4}(2\cos^2\vartheta - 1) - \tfrac{13}{2}\vartheta -\tfrac{13}{4}(2\sin\vartheta\cos\vartheta) + C\\ &=-\tfrac{3}{2}\cos^2\vartheta +\tfrac{3}{4} -\tfrac{13}{2}\vartheta -\tfrac{13}{2}\sin\vartheta\cos\vartheta+C\\ &= -\tfrac{3}{2}\cos^2\vartheta -\tfrac{13}{2}\vartheta -\tfrac{13}{2}\sin\vartheta\cos\vartheta + C.\end{aligned}\]

Note that in the last line above, $\tfrac{3}{4}$ is a constant, so it can get absorbed in the integration constant $C$.

Now, to convert everything back into terms of $x$, we recall that $x+4=\tan\vartheta$. Constructing a right triangle with the side opposite of $\vartheta$ having length $x+4$ and adjacent side with length $1$, it follows that $\sin\vartheta=\dfrac{x+4}{\sqrt{(x+4)^2+1}} = \dfrac{x+4}{\sqrt{x^2+8x+17}}$, $\cos\vartheta=\dfrac{1}{\sqrt{x^2+8x+17}}$ and $\vartheta=\arctan(x+4)$. Therefore,
\[\begin{aligned} -\tfrac{3}{2}\cos^2\vartheta -\tfrac{13}{2}\vartheta- \tfrac{13}{2}\sin\vartheta\cos\vartheta +C &= -\tfrac{3}{2} \left(\frac{1}{x^2+8x+17}\right) -\tfrac{13}{2}\arctan(x+4) -\tfrac{13}{2}\left(\frac{x+4}{x^2+8x+17}\right) +C \\ &= -\frac{1}{2}\left[\frac{3}{x^2+8x+17} +13\arctan(x+4) +\frac{13x+52}{x^2+8x+17} \right] +C \\ &= -\frac{1}{2}\left[\frac{13x+55}{x^2+8x+17} + 13\arctan(x+4)\right]+C\end{aligned}\]


Putting it all together, we see that

\[\begin{aligned} \int\frac{x^3+8x^2+26x-3}{(x^2+8x+17)^2}\,dx &= \int\frac{x+4}{(x+4)^2+1}\,dx - \int\frac{4}{(x+4)^2+1}\,dx +3\int\frac{3x-1}{((x+4)^2+1)^2}\,dx \\ &= \left(\tfrac{1}{2}\ln(x^2+8x+17)\right) - \left(4\arctan(x+4)\right) + 3\left(-\frac{1}{2}\left[\frac{13x+55}{x^2+8x+17} + 13\arctan(x+4)\right]\right) + C \\ &= \frac{1}{2}\left[\ln(x^2+8x+17) - 8\arctan(x+4) -\frac{3(13x+55)}{x^2+8x+17} - 39\arctan(x+4)\right] + C\\ &= \boxed{\dfrac{1}{2} \left[\ln(x^2+8x+17) - 47\arctan(x+4) - \dfrac{3(13x+55)}{x^2+8x+17} \right] + C}\end{aligned}\]

I hope everything makes sense!
 
Last edited:

Related to Xojessilynox's question at Yahoo Answers involving integration

What is integration?

Integration is a mathematical process that involves finding the area under a curve. It is used to solve problems in calculus and is a fundamental concept in mathematics.

Why is integration important?

Integration is important because it allows us to find the area under complex curves, which is useful in many fields such as physics, engineering, economics, and statistics. It also helps us solve various real-world problems.

What are the different methods of integration?

There are several methods of integration including the fundamental theorem of calculus, substitution, integration by parts, partial fractions, and trigonometric substitution. Each method is used for different types of integrals and can be chosen based on the complexity of the problem.

What is the difference between definite and indefinite integration?

Definite integration involves finding the exact value of the integral between two defined limits, while indefinite integration involves finding the general antiderivative of a function. In other words, definite integration gives a specific answer while indefinite integration gives a family of answers.

How is integration used in real life?

Integration has many real-life applications, such as calculating the area under a curve to find the volume of a 3D object, determining the velocity and acceleration of an object, and calculating the net change in a quantity over time. It is also used in economics, finance, and statistics to analyze data and make predictions.

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
3K
Replies
4
Views
3K
Back
Top