- Thread starter
- #1

#### karush

##### Well-known member

- Jan 31, 2012

- 2,836

$\tiny{whit.a.6.1}$

Show that the plane H defined by:

$H=\left\{

\alpha_1\left[

\begin{array}{rrr}1\\1\\1\end{array} \right]

+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]

\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}

=\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$

$\text{rref}(H)=\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$

ok I don't know what this answers

Show that the plane H defined by:

$H=\left\{

\alpha_1\left[

\begin{array}{rrr}1\\1\\1\end{array} \right]

+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]

\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}

=\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$

$\text{rref}(H)=\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$

ok I don't know what this answers

Last edited: