What is the work done by a spring on a block at various positions?

In summary, the first figure gives spring force Fx versus position x for the spring–block arrangement of the second figure. The scale is set by Fs = 160 N. We release the block at x = 12.0 cm. How much work does the spring do on the block when the block moves from xi =+9.0 cm to (a)x=+6.0 cm, (b)x=-6.0 cm, (c)x=-9.0 cm, and (d)x=-10.0 cm?
  • #1
shawn14parker
4
0
I am sorry if I am doing anything wrong. I'm new to this site and physics in general. Please feel free to correct me if I'm making some stupid mistake in formatting.

1. The first figure gives spring force Fx versus position x for the spring–block arrangement of the second figure. The scale is set by Fs = 160 N. We release the block at x = 12.0 cm. How much work does the spring do on the block when the block moves from xi =+9.0 cm to (a)x=+6.0 cm, (b)x=-6.0 cm, (c)x=-9.0 cm, and (d)x=-10.0 cm?


2. Homework Equations
I am probably missing an equation here, but here are the ones I used:

F = kx
Work = -.5k(Δx)^2​

3.
Okay, first I converted everything to meters, which just ended up moving the decimal two places left.

Second, I found k. (Force is Kg*m/(s*s), x is meters, so k is in Kg/(s*s), which is kinda a weird unit, but whatever)

F = kx
k = F/x
k = 160/.02
k = 8000​

Third, I plugged in the numbers for the work equation.

Work = -.5k Δx
-.5k = -.5*8000 = -4000
Δx = xf - xi
Work = -4000(xf - .09)^2​

Lastly, I plugged in the four ending points. (x's are in meters)

Axf = .06-----> Wa = -3.6 Joules
Bxf = -.06----> Wb = -90 Joules
Cxf = -.09----> Wc = -129.6 Joules
Dxf = -.1-----> Wd = -144.4 Joules​



Okay, as I was writing this up, I found out that I had made a stupid mistake in my calculations (I didn't square delta x in the work equations). However, I'm on my last shot on this online homework, and I want to get it RIGHT. So are these values correct? Or should they be positive? (I thought Joules were always positive, but I don't think I missed a minus anywhere...)
Thank you for your help!
 
Physics news on Phys.org
  • #2
shawn14parker said:
F = kx
Work = -.5k(Δx)^2​
Careful! That's the work done by the spring when it is stretched a distance Δx from its unstretched position, not for an arbitrary Δx.

3.
Okay, first I converted everything to meters, which just ended up moving the decimal two places left.

Second, I found k. (Force is Kg*m/(s*s), x is meters, so k is in Kg/(s*s), which is kinda a weird unit, but whatever)
From F = ma, you should recognize Kg*m/(s*s) as equivalent to a Newton.

F = kx
k = F/x
k = 160/.02
k = 8000​
OK.

Third, I plugged in the numbers for the work equation.

Work = -.5k Δx
-.5k = -.5*8000 = -4000
Δx = xf - xi
Work = -4000(xf - .09)^2​
No. Using your equation, you want ΔW.

You'll need to redo your calculations.

(I thought Joules were always positive, but I don't think I missed a minus anywhere...)
Joule is a unit of work/energy. Work can be positive or negative.
 
  • #3
Thanks! Could you tell me why, exactly, I would be solving for the change in work? I know you mentioned this:
Careful! That's the work done by the spring when it is stretched a distance Δx from its unstretched position, not for an arbitrary Δx.

But how do I know that I'm not supposed to do what I did? Additionally, how do you solve for the change in work? (I know that ΔW is Wfinal - Winitial, but what x's make up those works? Would it be that the Winitial Δx would be .12-.9? Or am I wrong, again?)
 
Last edited:
  • #4
shawn14parker said:
Thanks! Could you tell me why, exactly, I would be solving for the change in work? I know you mentioned this:


But how do I know that I'm not supposed to do what I did?


Additionally, how do you solve for the change in work? (I know that ΔW is Wfinal - Winitial, but what x's make up those works? Would it be that the Winitial Δx would be .12-.9? Or am I wrong, again?)
I think you'll have an easier time if you think in terms of the elastic potential energy stored in the spring. That is given by:
PE = .5kx2, where x is the displacement from equilibrium.

The work done by the spring in moving from one position to another will equal -ΔPE. (If the PE increases, that means the spring has done negative work.)

Note that Δ(y2) ≠ (Δy)2.
 
  • #5
...We haven't gone over potential energy yet; so I'm a bit clueless on what you just said there. Sorry about that.
 
  • #6
shawn14parker said:
...We haven't gone over potential energy yet; so I'm a bit clueless on what you just said there. Sorry about that.
No worries. In that case you'll just have to use your formula, but with the caveat that I explained in my earlier post.

For example, you'll first have to calculate the work done by the spring when stretched to +9.0 cm. Then compare that to the work done when stretched to +6.0 cm. And so on.

A most important tip is:
Doc Al said:
Note that Δ(y2) ≠ (Δy)2.
 
  • Like
Likes 1 person
  • #7
Ahh okay thank you very much!
 

Related to What is the work done by a spring on a block at various positions?

1. What is spring force?

Spring force is a type of force that is exerted by a spring when it is stretched or compressed. It is a restoring force that tries to bring the spring back to its original length.

2. How is spring force calculated?

The magnitude of spring force can be calculated using Hooke's Law, which states that the force exerted by a spring is directly proportional to the displacement of the spring from its equilibrium position. The formula for spring force is F = -kx, where F is the force, k is the spring constant, and x is the displacement.

3. What factors affect the strength of spring force?

The strength of spring force is affected by the spring constant, which is determined by the material and design of the spring, and the displacement of the spring from its equilibrium position. The greater the spring constant and displacement, the stronger the spring force will be.

4. What is the direction of spring force?

Spring force always acts in the opposite direction of the displacement of the spring. This means that if the spring is stretched, the spring force will be directed towards the equilibrium position, and if the spring is compressed, the spring force will be directed away from the equilibrium position.

5. What are some real-life examples of spring force?

Some common examples of spring force in everyday life include the force exerted by a spring in a trampoline, the force needed to compress or stretch a rubber band, and the force exerted by a spring in a car's suspension system to absorb shocks and vibrations.

Similar threads

Replies
5
Views
209
  • Introductory Physics Homework Help
Replies
12
Views
817
  • Introductory Physics Homework Help
Replies
29
Views
990
  • Introductory Physics Homework Help
Replies
9
Views
987
  • Introductory Physics Homework Help
Replies
14
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
530
  • Introductory Physics Homework Help
Replies
16
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
970
  • Introductory Physics Homework Help
Replies
4
Views
805
  • Introductory Physics Homework Help
Replies
5
Views
2K
Back
Top