- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,812

$a \le 1 \\a+4b \le 17\\a+4b+16c \le273\\a+4b+16c+64d \le4369$

Find the minimum value of $\dfrac{1}{d}+\dfrac{2}{4c+d}+\dfrac{3}{16b+4c+d}+\dfrac{4}{64a+16b+4c+d}$.

- Thread starter anemone
- Start date

- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,812

$a \le 1 \\a+4b \le 17\\a+4b+16c \le273\\a+4b+16c+64d \le4369$

Find the minimum value of $\dfrac{1}{d}+\dfrac{2}{4c+d}+\dfrac{3}{16b+4c+d}+\dfrac{4}{64a+16b+4c+d}$.

- Nov 26, 2013

- 733

Thus our minimum value must be: $\frac{4}{64} = \frac{1}{16}$.