- Thread starter
- #1

Identities I have set up are:

\begin{align}

E_p &= \frac{1}{2}(E_1 + E_2)\\

E_m &= \frac{1}{2}(E_1 - E_2)\\

x &= a\cos(E)\\

y &= a\sqrt{1 - e^2}\sin(E)\\

\cos(\zeta) &= e\cos(E_p)\\

\alpha &= \zeta + E_m\\

\beta &= \zeta - E_m

\end{align}

Lambert Section this may be easier to understand if you look at it.