Jan 2, 2021 Thread starter Admin #1 anemone MHB POTW Director Staff member Feb 14, 2012 3,812 If $x\in \left(0,\,\dfrac{\pi}{2}\right)$, $0\le a \le b$ and $0\le c \le 1$, prove that $\left(\dfrac{c+\cos x}{c+1}\right)^b<\left(\dfrac{\sin x}{x}\right)^a$.
If $x\in \left(0,\,\dfrac{\pi}{2}\right)$, $0\le a \le b$ and $0\le c \le 1$, prove that $\left(\dfrac{c+\cos x}{c+1}\right)^b<\left(\dfrac{\sin x}{x}\right)^a$.