- Thread starter
- #1

- Thread starter Wilmer
- Start date

- Thread starter
- #1

- Feb 1, 2012

- 57

It seems as simple as x/9 = 15/5, or am I missing something?

- Thread starter
- #3

No; those 2 triangles are not similar....and solution NOT simple: guaranteed!It seems as simple as x/9 = 15/5, or am I missing something?

- Jan 30, 2012

- 2,589

Are you claiming that triangles ABM and NBC are similar? Also, it is strange that the fact MN = 11 is not used.It seems as simple as x/9 = 15/5, or am I missing something?

- Moderator
- #5

- Feb 7, 2012

- 2,818

From the sine rule in triangle BNC, $\dfrac{\sin\theta}5 = \dfrac{\sin(\theta+\gamma)}{15}$.

From the sine rule in triangle BMA, $\dfrac{\sin\theta}9 = \dfrac{\sin(\theta+\alpha)}x$.

From the sine rule in triangle ABC, $\dfrac{\sin\alpha}{15} = \dfrac{\sin\gamma}x = \dfrac{\sin(\alpha+\gamma)}{25}$.

That gives four equations for the four unknowns $x$, $\theta$, $\alpha$, $\gamma$. So all you have to do is to solve the equations to find $x$.

In practice, I struggled to do that, but eventually I managed to eliminate $x$ and $\theta$ from the equations and ended with the relation $\sin\alpha = \tfrac23\sin\gamma.$ From there, it was easy to conclude that $\boxed{x = 22.5}.$ (Also, $\cos\alpha = \tfrac{29}{36}$, $\cos\gamma = \tfrac{11}{24}$ and $\tan\theta = \tfrac{\sqrt{455}}{61}.$)

- Thread starter
- #6

G on AC such that BG perpendicular to AC: AG = x, BG = y (of course).

Let u = angleABM = angleCBN.

TriangleABM: TAN(u) = [y / (x-9) - y/x] / [1 + (y / (x-9))(y/x)]

Do similarly with triangleBCN.

Use above equality and, along with Pythagoras' help with rights ABG and CBG, solve.