- Thread starter
- #1

#### Petrus

##### Well-known member

- Feb 21, 2013

- 739

T is a surjective linear transformation \(\displaystyle T: \mathbb{R^4}-> \mathbb{R^2}\). Decide dim ker T. How many free variables do I get if I solve equation system \(\displaystyle T(x)=y\) for a vector \(\displaystyle y \in \mathbb{R^2}\)? Construct a transformation matrix belonging to a surjective linear transformation \(\displaystyle T:\mathbb{R^4}->\mathbb{R^2}\)

My progres:

Dim ker T=\(\displaystyle 4-2=2\)

Dim ker T=free variables that mean we got 2 free variables

I'm stuck at transformation matrix

Regards,

\(\displaystyle |\pi\rangle\)

My progres:

Dim ker T=\(\displaystyle 4-2=2\)

Dim ker T=free variables that mean we got 2 free variables

I'm stuck at transformation matrix

Regards,

\(\displaystyle |\pi\rangle\)

Last edited by a moderator: