Apr 25, 2012 Thread starter #1 J jacks Well-known member Apr 5, 2012 226 How can i solve system of equations , if [tex]x,y,z\in \left[0,\frac{\pi}{2}\right)[/tex] [tex]\begin{cases}\tan x+\sin y+\sin z = 3x\\ \sin x+\tan y+\sin z = 3y\\ \sin x+\sin y+\tan z = 3z\end{cases}[/tex]
How can i solve system of equations , if [tex]x,y,z\in \left[0,\frac{\pi}{2}\right)[/tex] [tex]\begin{cases}\tan x+\sin y+\sin z = 3x\\ \sin x+\tan y+\sin z = 3y\\ \sin x+\sin y+\tan z = 3z\end{cases}[/tex]
Apr 25, 2012 #2 S soroban Well-known member Feb 2, 2012 409 Hello, jacks! How can i solve system of equations , if [tex]x,y,z \in \left[0,\tfrac{\pi}{2}\right)[/tex] [tex]\begin{array}{ccc}\tan x+\sin y+\sin z &=& 3x\\ \sin x+\tan y+\sin z &=& 3y\\ \sin x+\sin y+\tan z &=& 3z\end{array}[/tex] Click to expand... I don't think you can. . . The equations are transcendental. However, by inspection, [tex](x,y,z) \,=\,(0,0,0)[/tex] is a solution.
Hello, jacks! How can i solve system of equations , if [tex]x,y,z \in \left[0,\tfrac{\pi}{2}\right)[/tex] [tex]\begin{array}{ccc}\tan x+\sin y+\sin z &=& 3x\\ \sin x+\tan y+\sin z &=& 3y\\ \sin x+\sin y+\tan z &=& 3z\end{array}[/tex] Click to expand... I don't think you can. . . The equations are transcendental. However, by inspection, [tex](x,y,z) \,=\,(0,0,0)[/tex] is a solution.